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This paper puts forth an approximate yet accurate free energy for the elastic dielectric
response—under finite deformations and finite electric fields—of non-percolative dielectric
elastomer composites made out of a non-Gaussian dielectric elastomer matrix with defor-
mation-dependent apparent permittivity isotropically filled with nonlinear elastic dielectric
particles that may exhibit polarization saturation. While the proposed free energy applies in
its most general form to arbitrary isotropic non-percolative microstructures, closed-form
specializations are recorded for the practically relevant cases of rigid or liquid-like sphe-
rical particles. The proposed free energy is exact by construction in the asymptotic context
of small deformations and moderate electric fields and is shown to remain accurate for arbi-
trary large deformations and electric fields via comparisons with full-field finite-element
simulations. The proposed constitutive model is deployed to probe the electrostriction
response of these dielectric elastomer composites and corresponding results reveal that
their elastic dielectric response strongly depends on the deformation-dependent apparent
permittivity of the matrix they comprise. [DOI: 10.1115/1.4047289]
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1 Introduction and Main Results

Dielectric elastomers have been identified over the past 20 years
as potential enablers of various new technologies ranging from arti-
ficial muscles for soft robotics to energy harvesters and Braille
tactile displays [1–5]. As a result, these stretchable dielectrics
received a lot of experimental attention to determine their electro-
mechanical response when undergoing finite deformations while
being subjected to finite electric fields. Experimental evidence
[6–9] suggests that dielectric elastomers are so-called isotropic
ideal dielectrics, that is, isotropic deformable dielectrics wherein
the relation between the Eulerian electric displacement d and the
Eulerian electric field e is linear,

d = εme with εm = εmI (1)

and that irrespectively of the deformations and electric fields the
material is subjected to. This being true in particular when the mate-
rial is undeformed and subjected to small electric fields, the constant
second-order tensor ɛm—and by extension, the constant material
coefficient εm—in Eq. (1) can be naturally identified with and
referred to as the dielectric permittivity of the material.
Yet, another set of experimental data [10–13] indicates that

the dielectric constitutive relation between d and e in a dielectric
elastomer may in fact strongly depend on the deformations the
material undergoes. In contrast with the case of ideal dielectrics
detailed earlier, these materials have been described as having a
“deformation-dependent permittivity.” Although intuitively
descriptive, this terminology is slightly misleading since, strictly

speaking and as recalled above, the dielectric permittivity is the
constant second-order tensor that relates the electric displacement
and the electric field when the material is not deformed and sub-
jected only to small electric fields. To avoid this ambiguity, in
this work, these materials will instead be referred to as exhibiting
an apparent permittivity ε̂m(F) that depends explicitly on the gradi-
ent F of the deformation they undergo. This terminology also makes
it clear that the relation between d and e remains linear as far as the
dielectric variables are concerned, namely,

d = ε̂m(F)e (2)

Aside from dielectric elastomers, dielectric elastomer composites
are now being considered as promising pathways to enabling the
breadth of technological applications envisioned for stretchable
dielectrics due to their superior electromechanical properties
[14–21]. These materials are made out of a soft insulating elastomer
matrix—in other words, a dielectric elastomer—embedding typi-
cally high-permittivity or (semi-)conducting particles. While
current frameworks [22–27] for the electromechanical response of
dielectric elastomer composites treat the dielectric elastomer
matrix as an ideal dielectric, this work is concerned with dielectric
elastomer composites composed of a dielectric elastomer matrix
with a deformation-dependent apparent permittivity of the form

d = [mmI + (εm − mm)FFT ]e (3)

which has recently been shown to accurately capture the
deformation-dependent dielectric response of typical dielectric elas-
tomers, see, e.g., Ref. [28] based on the experimental data reported
in Ref. [13] for the dielectric elastomer VHB 4910 from 3M. It
follows from Eq. (2) and the above discussion that the dielectric
constitutive relation (3) is that of a dielectric elastomer with a
deformation-dependent apparent permittivity of the form

ε̂m(F) = mmI + (εm − mm)FFT (4)
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where εm andmm are two material parameters that correspond to the
dielectric permittivity and the electrostriction coefficient of the
dielectric elastomer matrix.
After recording some preliminary remarks in Sec. 2, a simple

explicit formula is proposed in Sec. 3 and shown—via comparison
with full-field finite-element (FE) simulations—to accurately
describe the elastic dielectric response of isotropic dielectric
elastomer composites made out of a neo-Hookean matrix with
deformation-dependent apparent permittivity of the form (4),
filled with ideal elastic dielectric particles. This result generalizes
the simple homogenization formula of Lefèvre and Lopez-Pamies
[26] for isotropic dielectric elastomer composites with a neo-
Hookean ideal elastic dielectric matrix and is recorded here for
convenience.
The elastic dielectric response of an elastic dielectric with

(incompressible) free-energy function Wm = μm[I1 − 3]/2 + (mm −
εm)IE4 /2 − mmIE5 /2 , filled with any type of non-percolative isotropic
distribution of ideal elastic dielectric particles with (incompress-
ible) free-energy function Wp = μp[I1 − 3]/2 − εpIE5 /2 is character-
ized by the (incompressible) free-energy function

W =
μ

2
I1 − 3[ ] + m − ε

2
IE4 −

m

2
IE5

where I1=F ·F, IE4 = E · E, and IE5 = F−TE · F−TE are isotropic
invariants of the deformation gradient F and Lagrangian electric
field E=F−Te, while the coefficients μ, ɛ, and m stand for the
shear modulus, dielectric permittivity, and electrostrictive constant
that characterize the response of the composite material in the
asymptotic limit of small deformations and moderate electric fields.
Similarly, a closed-form approximation is put forth in Sec. 4 for

the elastic dielectric response of isotropic dielectric elastomer com-
posites made out of a non-Gaussian matrix with deformation-
dependent apparent permittivity of the form (4), filled with nonlin-
ear elastic dielectric particles. This result constitutes a generaliza-
tion of an earlier result by Lefèvre and Lopez-Pamies [27] for
isotropic dielectric elastomer composites comprising a non-
Gaussian ideal dielectric matrix and is recorded here as well for
convenience.
The elastic dielectric response of a non-Gaussian dielectric

elastomer with (incompressible) free-energy function
Wm = ψm(I1) + (mm − εm)/2 IE4 − mm/2 IE5 , filled with any type of
non-percolative isotropic distribution of nonlinear elastic dielectric
particles with (incompressible) free-energy function Wp =
μp/2 [I1 − 3] − Sp(IE5 ) at volume fraction c, is characterized by
the (incompressible) free-energy function

W = (1 − c)ψm(I1) −
(1 − c)z

2
[I1 − 3] +

n(z)
2

I1 − 3[ ]

− cSp(I5) +
cξ

2
I5 +

ω(z, ξ) − ν(ξ)
2

IE4 −
ω(z, ξ)

2
IE5

with

I1 =
1

1 − c

∂n
∂z

(z) I1 − 3[ ] + 1
1 − c

∂ω
∂z

(z, ξ) IE4 − IE5
[ ]

+ 3

I5 = −
1
c

∂ω
∂ξ

(z, ξ) −
∂ν
∂ξ

(ξ)

( )
IE4 +

1
c

∂ω
∂ξ

(z, ξ)IE5

and n(z), ν(ξ), ω(z, ξ) are microstructure-dependent coefficients
that are defined in terms of the solutions of two uncoupled linear
pdes (given by expressions (33)), while the variables z and ξ are
implicitly defined as the solution of the following system of two non-
linear algebraic equations:

F 1{z, ξ} = 2ψ ′
m(I 1) − z = 0

F 2{z, ξ} = 2S′
p(I 5) − ξ = 0

In order to facilitate the use of the above two general results, their spe-
cializations to the practically relevant cases of rigid and liquid-like
spherical particles are also recorded in Secs. 3.2 and 4.2, respectively.

Finally, the above results are deployed in Sec. 5 to probe the elec-
trostriction response of dielectric elastomer composites made out of
the typical dielectric elastomer VHB 4910 which possesses a
deformation-dependent apparent permittivity [13]. It is shown that
the elastic dielectric response of the dielectric elastomer composite
strongly depends on the deformation-dependent apparent permittiv-
ity of the matrix it comprises.

2 Preliminaries
2.1 Kinematics. Consider a homogeneous deformable dielec-

tric solid occupying a domain Ω0 in its undeformed initial configu-
ration, with material points being identified by their initial position
vector X∈Ω0. When subjected to external stimuli, the material
occupies a different configuration Ω after material points move to
new positions identified by x= χ(X), with χ(X) a one-to-one
mapping between Ω0 and Ω. The deformation gradient then corre-
sponds to F=Grad χ.

2.2 Constitutive Modeling. Following now common practice,
the elastic dielectric response of the solid is characterized by a
“total” free-energy function [29,30], W(F, E), taken to be an objec-
tive function of the deformation gradient F and an objective and
even function of the Lagrangian electric field E. It follows then
that the “total” first Piola–Kirchhoff stress S and Lagrangian electric
displacement D at any given material point X∈Ω0 are given by

S(X) =
∂W
∂F

(F, E) and D(X) = −
∂W
∂E

(F, E) (5)

Remark 1 (F–D formulation). The elastic dielectric response of the
solid can be alternatively characterized by a free-energy function
W*(F, D), where F and D are taken as independent variables. It
then follows that

S(X) =
∂W∗

∂F
(F, D) and E(X) =

∂W∗

∂D
(F, D) (6)

Moreover, when the free energy W(F, E) is concave in E, the con-
nection

W∗(F, D) = sup
E

{D · E +W(F, E)} (7)

holds betweenW(F, E) andW*(F,D) while ifW*(F,D) is convex in
D, the relation

W(F, E) = − sup
D

{D · E −W∗(F, D)}

holds between them.
Remark 2 (Eulerian quantities). The “total” Cauchy stress σ, Euler-
ian electric field e, and Eulerian electric displacement d are related
to their Lagrangian counterparts by the relations

σ =
1

detF
SFT , e = F−TE, d =

1
detF

FD (8)

while the electric polarization p is given by

p = d − ε0e (9)

where ɛ0≈ 8.85 pF/m stands for the dielectric permittivity of
vacuum.
Remark 3 (Isotropic invariants). For isotropic materials, the
main interest of this work, the free energy W(F, E) can be written
down as a function of six standard invariants, W(F,E)=
W(I1, I2, J, IE4 , I

E
5 , I

E
6 ), with

I1 = trC, I2 =
1
2

(trC)2 − trC2[ ]
, J = detF (10)
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and

IE4 = E · E, IE5 = E · C−1E, IE6 = E · C−2E (11)

where C=FTF is the right-Cauchy-Green deformation tensor.
Similarly, the free energyW*(F, D) can be represented as a func-

tion of six standard invariants, the three mechanical invariants (10)
and

ID4 = D · D, ID5 = D · CD, ID6 = D · C2D

so that W∗(F, D) =W∗(I1, I2, J, ID4 , I
D
5 , I

D
6 ).

2.3 Non-Gaussian Dielectric Elastomers With
Deformation-Dependent Apparent Permittivity. As alluded to
in Sec. 1, the focus of this work is on isotropic incompressible
dielectric elastomer composites composed of an incompressible
non-Gaussian dielectric elastomer with deformation-dependent
apparent permittivity of the form (4). To this end, the elastic dielec-
tric response of the dielectric elastomer matrix is taken to be char-
acterized by a free-energy function of the form

Wm(F, E) =
ψm(I1) +

mm − εm
2 IE4 − mm

2 IE5 if J = 1
+∞ otherwise

{
(12)

where εm and mm stand for the permittivity and the electrostriction
coefficient of the dielectric elastomer, respectively.1 With help of
relations (5)2, (8)2,3, and (11)1,2, it is not difficult to show that
this choice precisely describes a solid satisfying the dielectric con-
stitutive relation (3) with deformation-dependent apparent
permittivity of the form (4). In the above expression, the function
ψm(I1) is an arbitrary function of choice that describes the elastic
response of the dielectric elastomer. Physical considerations
entail that ψm(I1) satisfies the requirements ψm(3) = 0 and
ψ ′
m(3) = μm/2, with μm > 0 the shear modulus of the dielectric elas-

tomer. Examples for the function ψm(I1) include for instance the
neo-Hookean [31], Arruda-Boyce [32], Gent [33], and Lopez-
Pamies [34] models.

2.4 Nonlinear Elastic Dielectric Particles With Possible
Polarization Saturation. Concentrating on nonlinear elastic
dielectric particles prompts considering free-energy functions of
the form

Wp(F, E) =
μp
2 [I1 − 3] − Sp(IE5 ) if J = 1
+∞ otherwise

{
(13)

to describe their elastic dielectric response. In this expression,
μp stands for the shear modulus of the particles and Sp(IE5 ) is a
function of choice to characterize their dielectric response. Physical
considerations entail that Sp(IE5 ) satisfies the requirements
Sp(0) = 0, S′

p(0) = εp/2 with εp > 0 the permittivity of the
particles, as well as the convexity conditions S′

p(I
E
5 ) > 0 and

S′
p(I

E
5 ) + 2IE5 S′′

p(I
E
5 ) > 0. While the choice Sp(IE5 ) = εpIE5 /2 corre-

sponds to ideal dielectric particles, other choices can be used for
instance to describe the saturation of the polarization of the particles
to a value psp at large electric fields. Granted that the polarization of

the particles is given by p = 2S′
p(I

E
5 ) − ε0

[ ]
e, Sp(IE5 ) represents

polarization saturation to psp so long it satisfies the growth condition

S′
p(I

E
5 ) = ε0/2 + psp/(2





IE5

√
) + o(1/





IE5

√
) as IE5 → ∞. Possible

choices of functions Sp(IE5 ) that describe polarization saturation
include the Langevin and Brillouin models, see, e.g., Ref. [35].

3 The Case of a Neo-Hookean Matrix Filled With Ideal
Dielectric Particles
We begin by considering isotropic incompressible dielectric

elastomer composites composed of a neo-Hookean matrix with
deformation-dependent apparent permittivity, filled with a dis-
tribution of ideal dielectric particles. This case corresponds to the
simplest prototype of dielectric elastomer composite with
deformation-dependent apparent-permittivity matrix and amounts
to choosing the functions

ψm(I1) =
μm
2

I1 − 3[ ] and Sp(I
E
5 ) =

εp
2
IE5

in Eqs. (12) and (13), with μm the shear modulus of the matrix and
εp the permittivity of the particles. A simple closed-form free energy
W(F, E) for any such dielectric elastomer composite is recorded in
Sec. 3.1. This result applies to any arbitrary isotropic, two-phase,
non-percolative particulate microstructure but is specialized to the
practically relevant case of rigid or liquid-like spherical particles
in Sec. 3.2 where its accuracy is established by direct comparisons
with full-field FE simulations.

3.1 Arbitrary Isotropic, Two-Phase, Non-percolative
Particulate Microstructure. We propose here that the elastic
dielectric response of an elastic dielectric with free-energy function

Wm(F, E) =
μm
2 I1 − 3[ ] + mm−εm

2 IE4 − mm
2 IE5 if J = 1

+∞ otherwise

{
(14)

filled with any non-percolative, two-phase, particulate, isotropic
distribution of ideal elastic dielectric particles with free-energy
function

Wp(F, E) =
μp
2 [I1 − 3] − εp

2 I
E
5 if J = 1

+∞ otherwise

{
(15)

is characterized by the free-energy function

W(F, E) =
μ
2 I1 − 3[ ] + m−ε

2 IE4 − m
2 IE5 if J = 1

+∞ otherwise

{
(16)

Here, μ, ɛ, andm stand for the shear modulus, permittivity, and elec-
trostrictive constant that characterize the response of the composite
in the asymptotic limit of small deformations and moderate electric
fields, see Remark 5. They are formally given by

μ =
1

5|Ω0|
∫
Ω0

μl(X)KklmnΓmkl,ndX

ε =
1

3|Ω0|
∫
Ω0

εl(X)γm,mdX

m =
1

5|Ω0|
∫
Ω0

ml(X)KijklΓrij,sKrspqγ p,kγq,ldX

(17)

where μl(X) = 1 − θp(X)
[ ]

μm + θp(X)μpεl(X) = 1 − θp(X)
[ ]

εm+
θp(X)εp, and ml(X) = 1 − θp(X)

[ ]
mm + θp(X)εp with θp denoting

the indicator function of the spatial regions occupied collectively
by the particles in Ω0, Kijkl = 1/2(δikδ jl + δilδ jk) − 1/3δijδkl with
δij denoting the Kronecker delta, the notation i represents partial dif-
ferentiation with respect to the material point coordinate Xi, and the
tensor fields Γ and γ are implicitly defined as the solutions of two
uncoupled linear boundary value problems:

μl(X)KijmnΓmkl,n + δijqkl
[ ]

,j=0, X ∈ Ω0

Γmkl,m = 0, X ∈ Ω0

Γikl = δikXl, X ∈ ∂Ω0

⎧⎨⎩ (18)

1In addition to their inherent physical meaning in the limit of small deformations
and moderate electric fields, insight into εm and mm can be gained when the dielectric
elastomer undergoes a biaxial stretch. Then, the apparent permittivity ε̂⊥(λ) normal to
the stretch plane transitions from εm to mm as the biaxial stretch λ≥ 1 increases:
ε̂⊥(λ) = mm + (εm − mm)λ

−4.
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where q(X) is a pressure-like second-order tensor associated with
the incompressibility constraint Γmkl,m= 0 in Ω0 and

εl(X)γi,j
[ ]

,i
= 0, X ∈ Ω0

γi = Xi, X ∈ ∂Ω0

{
(19)

Remark 4 (Meaning of the variables and parameters). It is recalled
here that in expressions (14)–(16), I1, J, IE4 , and IE5 stand for isotro-
pic invariants of F and E defined by Eqs. (10)1,3 and (11)1,2, μm, εm,
mm correspond to the shear modulus, permittivity, and electrostric-
tive coefficient of the matrix with free energy (14), while μp and εp
correspond to the shear modulus and permittivity of the particles
with free energy (15).
Remark 5 (Small deformation limit). By construction, the free
energy (16) is exact in the asymptotic limit of small deformations
and moderate electric fields, that is, when H ≐ F − I = O(ζ) and
E=O(ζ1/2) for a vanishingly small parameter ζ [26,36,37]. It
reduces asymptotically to

W(F, E) =
μH ·H − ε

2E · E + mE ·HE if trH = 0
+∞ otherwise

{
(20)

and implies the constitutive relations

S = μ(H +HT ) + mE⊗ E − qI and D = εE (21)

to leading order in ζ with q the hydrostatic pressure associated with
the incompressibility constraint tr H= 0. It is then plain from Eqs.
(20) and (21) that the coefficients μ, ɛ, and m correspond to the
shear modulus, permittivity, and electrostrictive constant of this
class of dielectric elastomer composites and fully characterize
their response in this limit.
The computation of these coefficients requires in general knowl-

edge of the third- and first-order tensors Γ and γ solutions (18) and
(19) which may be obtained, though laboriously, by means of com-
mercial FE packages. However, due to the overall isotropy of the
composites studied here, the elastic dielectric coefficients μ, ɛ,
and m can be computed by considering only certain components
of Γ and γ which can then be obtained in a straightforward
fashion by means of commercial FE packages, see Refs. [26,38].
It is also worth noting that for some microstructures, the tensors
Γ, γ and the elastic dielectric coefficients μ, ɛ, and m can be
worked out analytically, see, e.g., Ref. [39] for differential coated
sphere assemblages.
Remark 6 (Finite deformations and electric fields). For arbitrary
deformations and electric fields, the free energy (16) is only in
general an approximation. Its accuracy was however demonstrated
in Ref. [26] by direct comparisons with numerical solutions for a
number of different classes of isotropic dielectric elastomer com-
posites comprising an ideal dielectric matrix (mm = εm). We
report similar comparisons in Sec. 3.2 to establish the accuracy of
Eq. (16) for the more general case of a matrix with deformation-
dependent apparent permittivity (mm ≠ εm).
Now, making use of Eq. (5), the free energy (16) leads to the fol-

lowing constitutive relations for the first Piola–Kirchhoff total stress
S and electric displacement D:

S = μF + mF−TE⊗ F−1F−TE − qF−T

D = (ε − m)E + mF−1F−TE

where q is the hydrostatic pressure associated with the incompres-
sibility constraint J= 1. Expressions (8)1,3 and (9) for the total
Cauchy stress σ, Eulerian electric displacement d, and polarization
p then lead to

σ = μFFT + me⊗ e − qI, d = me + (ε − m)FFTe

p = (m − ε0)e + (ε − m)FFTe (22)

It is plain from expression (22)2 that such dielectric elastomer com-
posites also exhibit a deformation-dependent apparent permittivity
ε̂(F) = mI + (ε − m)FFT that is of the same form (4) as that of
the matrix they comprise. This characteristic stems from the inher-
ent heterogeneous nature of these materials and not from
the deformation-dependent nature of the apparent permittivity of
the matrix, as, in general, m≠ ɛ even when the matrix is an ideal
dielectric (mm = εm), see Ref. [26].
Remark 7 (Functional form of Eq. (16)). A defining feature of
expression (16) is its linearity in the invariants I1, IE4 , and IE5 and
its independence of the invariants I2 and IE6 . This characteristic is
exact in the case of small deformations and moderate electric
fields [26] and shown to hold approximately for arbitrary deforma-
tions and electric fields in Sec. 3.2. In addition, this feature is lever-
aged in Sec. 4 within the context of nonlinear comparison medium
methods [27,40,41] to obtain a free energy for dielectric elastomer
composites with a non-Gaussian matrix filled with particles with
possible polarization saturation, that is, arbitrary choices of func-
tions ψm(I1) and Sp(IE5 ) in Eqs. (12) and (13).
Remark 8 (F–D formulation). The free energy W*(F, D) corre-
sponding to the free energy W(F, E) given by Eq. (16) can be
readily obtained from Eq. (7) and reads

W∗(F, D)

=
μ
2 I1 − 3[ ] + ID5 + η2ID4 + η(I1ID5 − ID6 )

2m(1 + η3 + η2I2 + ηI1)
if J = 1

+∞ otherwise

⎧⎨⎩ (23)

where η ≐ (ε − m)/m. It then follows from Eq. (6) that the first
Piola–Kirchhoff stress tensor S and Lagrangian electric field E
can be written as

S = μF − qF−T +
1

m(1 + η3 + η2I2 + ηI1)

× η(ID5 F − FD⊗ FTFD − FFTFD⊗ D) + (1 + ηI1)FD⊗ D
[ ]

−
ηID5 + η3ID4 + η2(I1ID5 − ID6 )

m(1 + η3 + η2I2 + ηI1)2
F − ηF−TF−1F−T[ ]

and

E =
1

m(1 + η3 + η2I2 + ηI1)

× (1 + ηI1)FTFD + η2D − ηFTFFTFD
[ ]

in terms of the deformation gradient F and the Lagrangian electric
displacement D.
Remark 9 (Special case of interest). As already mentioned in
Sec. 1, expression (16) reduces to the result by Lefèvre and Lopez-
Pamies [26] when the matrix is an ideal dielectric (mm = εm). While
the free energy (16) shares its functional form with the result—
Eq. (32)—in Ref. [26] it generalizes, the two results differ from
the value taken by the electrostrictive coefficient m, which
depends explicitly on whether the apparent permittivity of the
matrix is deformation-dependent (mm ≠ εm) or not (mm = εm).

3.2 Isotropic Distribution of Spherical Particles. We report
next the specialization of the above result to the practical cases of
dielectric elastomer composites comprising isotropic distributions
of rigid- or liquid-like spherical particles.

3.2.1 Rigid Spherical Particles. The majority of experimental
investigations conducted to date on dielectric elastomer composites
involve equiaxed filler particles with a shear modulus that is several
orders of magnitude higher than that of the dielectric elastomer
matrix [14–18,20]. This prompts spelling out the result above in
the limit of rigid particles, that is, when μp =∞. In this case, and
when the particles are spherical in shape, the elastic dielectric
coefficients μ, ɛ, and m defined by Eq. (17) can be accurately
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approximated by

μ = (1 − c)−5/2μm, ε = εm +
3c(εp − εm)εm

(2 + c)εm + (1 − c)εp

m = mm +
3c(10 + 2c + 3c2)(εp − εm)εmmm

5[(2 + c)εm + (1 − c)εp]2

+
3c(1 − c)(5 + 3c)(εp − εm)εpmm

5[(2 + c)εm + (1 − c)εp]2
(24)

within the range c∈ [0, 0.25] of volume fractions of particles, and
for all values of material coefficients μm, εm, mm, and εp of the
matrix and particles. The finite branch of the incompressible free
energy of isotropic dielectric elastomers composites composed of
a neo-Hookean deformation-dependent apparent-permittivity
matrix—with free energy (14)—filled with rigid ideal dielectric
spherical particles is then given explicitly by

Wr,sph =
μm

2(1 − c)5/2
I1 − 3[ ] + m − ε

2
IE4 −

m

2
IE5 (25)

with μm the shear modulus of the matrix and ɛ and m given explic-
itly by Eq. (24)2,3. The accuracy of the free energy Wr,sph above is
established next.
We begin with the asymptotic limit of small deformations and

moderate electric fields where, granted Eqs. (20) and (21), it suffices
to probe the accuracy of expressions (24) for the elastic dielectric
coefficients μ, ɛ, and m. Given that expressions (24)1,2 have

already been shown [26,41] to be accurate approximations for μ
and ɛ in the case of rigid spherical particles and that they do not
depend on the electrostrictive coefficient of the matrix mm, we
only focus here on expression (24)3 for the electrostrictive coeffi-
cient m. This expression is plotted—normalized by mm—in
Fig. 1(a) (labeled as “Rig. Sph. Analytical”) as a function of c
and εp for the choice mm/εm = 0.6 which is a representative of
the elastic dielectric response of a typical dielectric elastomer
with deformation-dependent apparent permittivity [28]. The solid
circles in Fig. 1(a) (labeled as “Rig. Sph. FE”) correspond to FE
results for composites made out of a dielectric elastomer with free
energy (14) isotropically filled with rigid spherical particles with
free energy (15) that are monodisperse in size, see Remark 5 and
Refs. [26,38] for details about these simulations. It is plain from
Fig. 1(a) that Eq. (24)3 provides an accurate representation of the
electrostrictive coefficient m.
Next, we probe the accuracy of the proposed free energy (25)

with Eq. (24)2,3 for arbitrary deformations and arbitrary electric
fields as well as investigate its particular functional form, that is,
its linearity in the invariants I1, IE4 , and IE5 and its independence
of I2 and IE6 , see Remark 7. This is achieved by direct comparisons
with full-field FE simulations for a dielectric elastomer with free
energy (14) and mm/εm = 0.6 isotropically filled with a volume
fraction c= 0.05 of rigid monodisperse spherical particles with
free energy (15) and εp/εm = 102; see Refs. [26,27] for details
about these simulations. To this end, as shown in Figs. 1(b)–1( f ),
the response of the composite is probed along different electrome-
chanical paths for which the value of only one of the invariants I1,

(a)

(b) (c)

(e)(d ) (f )

Fig. 1 (a) Plot of the electrostrictive coefficientm—normalized bymm—as a function of c and the inverse of the permittivity of the
particles εp—normalized by εm—for the case of spherical rigid particles when mm/εm = 0.6. The solid circles (“Rig. Sph. FE”) cor-
respond to FE results while the solid surface (“Rig. Sph. Analytical”) corresponds to the explicit formula (24). (b)–(f) Plots of the
free energyW for a neo-Hookean deformation-dependent apparent-permittivity matrix filled with a volume fraction c=0.05 of rigid
ideal dielectric spherical particles withmm/εm = 0.6 and εp/εm = 102. The solid lines (“Rig. Sph. Theory”) correspond to expression
(25) with (24)2,3 while the dashed lines (“Rig. Sph. FE”) correspond to full-field FE simulations.

Journal of Applied Mechanics SEPTEMBER 2020, Vol. 87 / 091006-5



I2, IE4 , I
E
5 , and IE6 varies, while the other four remain constant in

value. The results shown in Figs. 1(b)–1( f ) correspond to two
sets of fixed values of the five invariants, I1= 3.81, I2= 3.59,
εmIE4 /μm = 0.45, εmIE5 /μm = 0.58, εmIE6 /μm = 0.85, and I1= 4.04,
I2= 3.74, εmIE4 /μm = 0.27, εmIE5 /μm = 0.35, εmIE6 /μm = 0.58.
Note that fixing the value of four out of the five invariants
imposes bounds on the range of values that the varied invariant
can take and that the varied invariant covers the entire range of
values it can take; for instance, 3.55≤ I1≤ 3.81 for the first set of
fixed values and 3.66≤ I1≤ 4.05 for the second set of fixed values.
In addition to the results shown in Fig. 1, a large set of compar-

isons, not reported here for conciseness, has confirmed that expres-
sion (24)3 for the electrostrictive coefficient m and the free energy
(25) with Eq. (24)2,3 remain in good agreement with FE results
independently of the ratios mm/εm and εp/εm. Expression (25)
with Eq. (24)2,3 therefore provides an accurate free energy for iso-
tropic dielectric elastomer composites composed of a neo-Hookean
deformation-dependent apparent-permittivity matrix with free
energy (14) filled with rigid ideal dielectric spherical particles.

3.2.2 Liquid-like Spherical Particles. Recent theoretical
[22,26,27,28] and experimental [21,42] evidence have suggested
that embedding liquid-like particles in dielectric elastomers may
significantly enhance their electrostrictive properties. Modeling
these particles has being incompressible with vanishingly small
shear resistance then prompts taking the limit μp = 0 in the results
presented in Sec. 3.1. In this case, and when the filler particles
are spherical in shape in their undeformed configuration, the

expressions

μ = (1 − c)5/3μm, ε = εm +
3c(εp − εm)εm

(2 + c)εm + (1 − c)εp

m = mm +
c2 400 − 729c11/25
( )

(εp − εm)2εm
500[(2 + c)εm + (1 − c)εp]2

+
3cεm(5εmεp − 3εmmm − 2εpmm)

[(2 + c)εm + (1 − c)εp]2
(26)

are accurate approximations of the elastic dielectric coefficients μ, ɛ,
and m—defined by Eq. (17)—within the range c∈ [0, 0.25] of
volume fractions of particles, and for all values of material param-
eters μm, εm, mm, εp. As demonstrated next, the finite branch of the
incompressible free energy of isotropic dielectric elastomers com-
posites composed of a neo-Hookean deformation-dependent
apparent-permittivity matrix with free energy (14) filled with liquid-
like ideal dielectric spherical particles can then be accurately repre-
sented by

Wl,sph =
μm
2
(1 − c)5/3 I1 − 3[ ] + m − ε

2
IE4 −

m

2
IE5 (27)

with μm the shear modulus of the matrix and ɛ and m given explic-
itly by Eq. (26)2,3.
In the same fashion as above for the case of rigid spherical par-

ticles, expression (26)3 is plotted—normalized by mm—in
Fig. 2(a) (labeled as “Liq. Sph. Analytical”) as a function of c

(a)

(b) (c)

(e)(d ) (f )

Fig. 2 (a) Plot of the electrostrictive coefficientm—normalized bymm—as a function of c and the inverse of the permittivity of the
particles εp—normalized by εm—for the case of spherical liquid-like particles whenmm/εm = 0.6. The solid circles (“Liq. Sph. FE”)
correspond to FE results while the solid surface (“Liq. Sph. Analytical”) corresponds to the explicit formula (26). (b)–(f) Plots of the
free energy W for a neo-Hookean deformation-dependent apparent-permittivity matrix filled with a volume fraction c=0.05 of
liquid-like ideal dielectric spherical particles with mm/εm = 0.6 and εp/εm = 102. The solid lines (“Liq. Sph. Theory”) correspond
to expression (27) with (26)2,3 while the dashed lines (“Liq. Sph. FE”) correspond to full-field FE simulations.
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and εp for the choice mm/εm = 0.6. The solid circles in Fig. 2(a)
(labeled as “Liq. Sph. FE”) correspond to FE results for composites
made out of a dielectric elastomer with free energy (14) isotropi-
cally filled with liquid-like spherical particles with free energy
(15) that are monodisperse in size, see Remark 5 and Refs.
[26,38] for details about these simulations. Recall that within the
asymptotic limit of small deformations and moderate electric
fields, it suffices to probe the accuracy of expressions (26) for the
elastic dielectric coefficients μ, ɛ, and m. Note as well that expres-
sions (26)1,2 have already been shown [26] to be accurate approxi-
mations for μ and ɛ in the case of liquid-like spherical particles and
that they do not depend on the electrostrictive coefficient of the
matrix mm.
Similar to Figs. 1(b)–1( f ) for rigid spherical particles, the free

energy (27) with (26)2,3 is plotted in Figs. 2(b)–2( f ) for specific
electromechanical loadings that correspond to fixing the value of
four out of the five invariants I1, I2, IE4 , I

E
5 , and I

E
6 while the remain-

ing invariant varies. Corresponding results from full-field FE simu-
lations are also plotted in Figs. 2(b)–2( f ) for a dielectric elastomer
with free energy (14) and mm/εm = 0.6 isotropically filled with a
volume fraction c= 0.15 of liquid-like monodisperse spherical par-
ticles with free energy (15) and εp/εm = 102, see Refs. [26,27] for
details about these simulations. The good agreement between the
two sets of results demonstrates the accuracy of the proposed free
energy (27) with (26)2,3 for the case of liquid-like spherical particles
and supports that it is approximately linear in the invariants I1, IE4 ,
and IE5 and independent of I2 and IE6 , see Remark 7.
A large set of results has confirmed that expression (26)3 for the

electrostrictive coefficient m and free energy (27) with (26)2,3
remain in good agreement with corresponding FE results indepen-
dently of the ratios mm/εm and εp/εm. This supports that expression
(27) with (26)2,3 is an accurate free energy for the elastic dielectric
response of neo-Hookean deformation-dependent apparent-
permittivity elastomers with free energy (14) isotropically filled
with liquid-like ideal dielectric spherical particles.

4 The Case of a Non-Gaussian Matrix Filled With
Nonlinear Elastic Dielectric Particles
We put forth in this section a free energy for the elastic dielectric

response of non-Gaussian dielectric elastomers with deformation-
dependent apparent permittivity that are isotropically filled with
nonlinear elastic dielectric particles. This corresponds to any appro-
priate choices of functions ψm(I1) and Sp(IE5 ) in Eqs. (12) and (13)
to describe the elasticity of the matrix and the polarization of the
particles. The proposed free energy is obtained by means of a non-
linear comparison medium method [27,40,41] in nonlinear electro-
statics and leverages the free energy (16) for neo-Hookean dielectric
elastomers embedding ideal elastic dielectric particles derived in
Sec. 3. The general formulation of the proposed result is recorded
in Sec. 4.1 and applies to arbitrary isotropic, two-phase, non-
percolative particulate microstructures while its specialization to
the practically relevant cases of rigid or liquid-like spherical parti-
cles is laid out in Sec. 4.2. Here again, the accuracy of the proposed
free energy is established by direct comparisons with full-field FE
simulations.

4.1 Arbitrary Isotropic, Two-Phase, Non-percolative
Particulate Microstructure. The elastic dielectric response of an
elastic dielectric with free energy

Wm(F, E) =
ψm(I1) +

mm−εm
2 IE4 − mm

2 IE5 if J = 1
+∞ otherwise

{
(28)

filled with any type of non-percolative, two-phase, particulate, iso-
tropic distribution of elastic dielectric particles with free energy

Wp(F, E) =
μp
2 [I1 − 3] − Sp(IE5 ) if J = 1
+∞ otherwise

{
(29)

is characterized by the free energy

W(F, E) =

(1 − c)ψm(I 1) − (1−c)z
2 [I1 − 3]

+ n(z)
2 I1 − 3[ ] − cSp(I 5) +

cξ
2 I5 if J = 1

+ ω(z, ξ)−ν(ξ)
2 IE4 − ω(z, ξ)

2 IE5
+∞ otherwise

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (30)

with

I1 =
1

1 − c

∂n
∂z

(z) I1 − 3[ ] + 1
1 − c

∂ω
∂z

(z, ξ) IE4 − IE5
[ ]

+ 3

I5 = −
1
c

∂ω
∂ξ

(z, ξ) −
∂ν
∂ξ

(ξ)

( )
IE4 +

1
c

∂ω
∂ξ

(z, ξ)IE5

(31)

where the variables z and ξ are implicitly defined as the solutions of
the system of two nonlinear algebraic equations

F 1{z, ξ} ≐ 2ψ ′
m(I1) − z = 0

F 2{z, ξ} ≐ 2S′
p(I5) − ξ = 0

(32)

In the above expressions, n(z), ν(ξ), and ω(z, ξ) are given by

n(z) =
1

5|Ω0|
∫
Ω0

μl,c(X)KklmnΓmkl,ndX

ν(ξ) =
1

3|Ω0|
∫
Ω0

εl,c(X)γm,mdX

ω(z, ξ) =
1

5|Ω0|
∫
Ω0

ml,c(X)KijklΓrij,sKrspqγ p,kγq,ldX

(33)

where μl,c(X) = 1 − θp(X)
[ ]

z + θp(X)μp,εl,c(X) = 1 − θp(X)
[ ]

εm+
θp(X)ξ, ml,c(X) = 1 − θp(X)

[ ]
mm + θp(X)εp and the tensor fields

Γ and γ are defined as the solutions of the two uncoupled linear
boundary value problems

μl,c(X)KijmnΓmkl,n + δijqkl
[ ]

,j = 0, X ∈ Ω0

Γmkl,m = 0, X ∈ Ω0

Γikl = δikXl, X ∈ ∂Ω0

⎧⎨⎩ (34)

where q(X) is a pressure-like second-order tensor associated with
the incompressibility constraint Γmkl,m= 0 in Ω0 and

εl,c(X)γi,j
[ ]

,i
= 0, X ∈ Ω0

γi = Xi, X ∈ ∂Ω0

{
(35)

Remark 10 (Meaning of the variables and parameters). We begin
by recalling here that in the above expressions, I1, J, IE4 , and IE5
stand for isotropic invariants of F and E defined by Eqs. (10)1,3
and (11)1,2, ψm(I1) is a function of choice that describes the elastic-
ity of the dielectric elastomer matrix while εm andmm correspond to
its permittivity and electrostrictive coefficient, and μp corresponds
to the shear modulus the particles while S′

p(I5) describe the specif-
ics of their polarization.
Now, as above-mentioned, the free energy (30) was obtained

by way of a nonlinear comparison medium method. We do not
provide the derivation here as it closely follow the one in
Ref. [27] but detail nonetheless its key steps. Comparison
medium methods are analytical techniques that allow for the deriva-
tion of variational solutions for the free energy of the composite of
interest based on the response of another material, the so-called
comparison medium, see Fig. 3 for a schematic. Here, the
comparison medium is chosen to be itself a dielectric elastomer
composite, and more specifically, to be of the type studied in
Sec. 3. It is made out of a matrix with incompressible free
energy Wm,c = z[I1 − 3]/2 + (mm − εm)IE4 /2 − mmIE5 /2, filled with
the same isotropic distribution of particles—with incompressible
free energy Wp,c = μp[I1 − 3]/2 − ξIE5 /2—as in the composite of
interest. It is plain from this choice of comparison medium that
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the variable z corresponds physically to the shear modulus of the
matrix in the nonlinear composite comparison medium while the
variable ξ corresponds physically to the permittivity of the particles
in the comparison medium. It then follows from the results in
Sec. 3.1 that the elastic dielectric response of this choice of
comparison medium is given by the incompressible free energy
Wc = n(z) I1 − 3[ ]/2 + [ω(z, ξ) − ν(ξ)] IE4 /2 − ω(z, ξ) IE5 /2 where
the coefficients n(z), ν(ξ), and ω(z, ξ) correspond physically to the
shear modulus, permittivity, and electrostrictive coefficient of the
nonlinear composite comparison medium, and following from
Eq. (17) are precisely defined by Eq. (33). From there, and
making critical use of the Legendre transform W∗

c (F, D) =
supE {D · E +Wc(F, E)} that is analogous in form to Eq. (23), the
comparison medium framework finally leads to the free energy W
given by Eq. (30)—where Wc can be identified—with
Eqs. (31)–(32) for the dielectric elastomer composite of interest.
We note here that I1 and I5 defined by Eq. (31) correspond to
“amplified” measure of strains and electric fields at which ψm and
Sp are evaluated in Eq. (30) and that the choice of nonlinear com-
posite comparison medium has been “optimized” by taking the
shear modulus of its matrix z and permittivity of its particles ξ to
be given by as solutions of the two optimality conditions (32) in
the form of two nonlinear algebraic equations.
Remark 11 (Small deformation limit). In the limit of small deforma-
tions and moderate electric fields, that is again, when H=F− I=
O(ζ) and E=O(ζ1/2) for a vanishingly small parameter ζ, I 1 = 3 +
O(ζ) and I 5 = O(ζ) so that the nonlinear algebraic equations (32)
admit as solutions z = μm + O(ζ) and ξ = εp + O(ζ); recall that the
functions ψm(I1) and Sp(IE5 ) must be chosen so that ψ ′

m(3) = μm/2
and S′

p(0) = εp/2. It follows that the coefficients n(z), ν(ξ), and
ω(z, ξ) defined by Eq. (33) reduce to the elastic dielectric coeffi-
cients μ, ɛ, and m defined by Eq. (17) and the free energy (30)
reduces asymptotically to Eq. (20) as expected. The free energy
(30) is then by construction asymptotically exact in the limit of
small deformations and moderate electric fields.
Remark 12 (Finite deformations and electric fields). For arbitrary
deformations and electric fields, the free energy (30) is only a var-
iational approximation. Its accuracy was however demonstrated in
Ref. [27] by direct comparisons with numerical solutions for a
number of different classes of isotropic dielectric elastomer com-
posites comprising an ideal dielectric matrix (mm = εm). We
report similar comparisons in Sec. 4.2 to establish the accuracy of
Eq. (30) for the more general case of a matrix with deformation-
dependent apparent permittivity (mm ≠ εm).
Now, making use of Eq. (5) with the relations ∂W/∂I 1 =

∂W/∂I5 = ∂W/∂n = ∂W/∂ν = 0 that follow from Eqs. (31) and

(32), the free energy (30) leads to the constitutive relations

S = n(z)F + ω(z, ξ)F−TE⊗ F−1F−TE − qF−T

D = [ν(ξ) − ω(z, ξ)]E + ω(z, ξ)F−1F−TE
(36)

where q is the hydrostatic pressure associated with the incompres-
sibility constraint J= 1, for the first Piola–Kirchhoff stress S and
electric displacement D. Expressions (8)1,3 and (9) for the total
Cauchy stress σ, Eulerian electric displacement d, and polarization
p then lead to

σ = n(z)FFT + ω(z, ξ)e⊗ e − qI

d = ω(z, ξ)e + [ν(ξ) − ω(z, ξ)]FFTe

p = [ω(z, ξ) − ε0]e + [ν(ξ) − ω(z, ξ)]FFTe

(37)

It is plain from expression (37)2 that such dielectric elastomer com-
posites also exhibit an apparent permittivity ε̂(F, E) = ω(z, ξ)I +
[ν(ξ) − ω(z, ξ)]FFT that depends both on mechanical deformations
they undergo and the electric fields they are subjected to; recall that
z and ξ—and therefore the precise dependence on deformations and
electric fields of this apparent permittivity—depend in general on F
and E and on the choice of functions ψm(I1) and Sp(IE5 ) in Eqs. (28)
and (29) through Eqs. (31) and (32).
Remark 13 (Functional form of Eq. (30)). A defining feature of the
free energy (30) is its independence of the invariants I2 and IE6 ,
which can be traced back to the independence of Eqs. (28) and
(29), and—through Wc—(16) of these invariants. As above, this
feature is exact in the limit of small deformations and moderate
electric fields and is shown in Sec. 4.2 to hold fairly accurately
for arbitrary deformations and electric fields.
Remark 14 (F–D formulation). The free energy W*(F, D) corre-
sponding to the free energy W(F, E) given by Eq. (30) can be
readily obtained from Eq. (7) and reads

W∗(F, D) =

(1 − c)ψm(J 1) − z(1−c)
2 [J 1 − 3]

+ n(z)
2 I1 − 3[ ] + cS∗

p(J 5) − c
2ξJ 5+ if J = 1

ID5 + ρ2ID4 + ρ[I1ID5 − ID6 ]
2ω(z, ξ)[1 + ρ3 + ρ2I2 + ρI1]
+∞ otherwise

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
with

J 1 =
1

1 − c
(I1 − 3)

∂n
∂z

(z) −
1

ω(z, ξ)2
∂ω
∂z

(z, ξ)
[

×
3ID4 ρ

2 + 2ρ[I1ID5 + ID4 − ID6 ] + [I1 + 1]ID5 − ID6
1 + ρ3 + ρ2I2 + ρI1

(
−
I1 + ρ[I1 + 2I2] + ρ2[2I2 + 3] + 3ρ3

1 + ρ3 + ρ2I2 + ρI1[ ]2

× ID5 + ρ2ID4 + ρ[I1I
D
5 − ID6 ]

( ))]
+ 3

and

J 5 =
ξ2

cω(z, ξ)2
∂ω
∂ξ

(z, ξ)
ID5 + ID4 ρ

2 + ρ[I1ID5 − ID6 ]
1 + ρ3 + ρ2I2 + ρI1

[ ]
−

ξ2

cω(z, ξ)2
(1 + ρ)

∂ω
∂ξ

(z, ξ) −
∂ν
∂ξ

(ξ)

[ ]
×

ID5 + ρ2ID4 + ρ[I1ID5 − ID6 ]
( )

I1 + 2ρI2 + 3ρ2
( )

1 + ρ3 + ρ2I2 + ρI1[ ]2
[

−
I1ID5 − ID6 + 2ρID4
1 + ρ3 + ρ2I2 + ρI1

]
,

with ρ ≐ (ν(ξ) − ω(z, ξ))/ω(z, ξ) and where the variables z and ξ are
defined implicitly as the solutions of the system of two nonlinear

(a)

(b)

Fig. 3 Schematics of (a) the dielectric elastomer composite of
interest and (b) the choice of nonlinear composite comparison
medium
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algebraic equations

F∗
1{z, ξ} ≐ ψ ′

m(J 1) −
z

2
= 0

F∗
2{z, ξ} ≐ S∗′(J 5) −

1
2ξ

= 0

The expressions for the first Piola–Kirchhoff stress S and
Lagrangian electric field E that the above relations entail with
Eq. (6) read as

S = ν(z)F − qF−T +
1

ω(z, ξ)(1 + ρ3 + ρ2I2 + ρI1)

× ρ(ID5 F − FD⊗ FTFD − FFTFD⊗ D) + (1 + ρI1)FD⊗ D
[ ]

−
ρID5 + ρ3ID4 + ρ2(I1ID5 − ID6 )

ω(z, ξ)(1 + ρ3 + ρ2I2 + ρI1)2
F − ρF−TF−1F−T[ ]

and

E =
1

ω(z, ξ)(1 + ρ3 + ρ2I2 + ρI1)

× (1 + ρI1)FTFD + ρ2D − ρFTFFTFD
[ ]

in terms of the deformation gradient F and the Lagrangian elec-
tric displacement D.
Remark 15 (Special cases of interest). A number of special cases of
Eq. (30) are worth detailing explicitly.
As already mentioned in Sec. 1, expression (30) reduces to the

result by Lefèvre and Lopez-Pamies [27] when the matrix is an
ideal dielectric (mm = εm). The free energy (30) shares its func-
tional form with this earlier result—Eq. (56) in Ref. [27]—but
thetwo results differ by the value taken by the electrostrictive coef-
ficient m that depends explicitly on whether the apparent permittiv-
ity of the matrix is deformation-dependent, mm ≠ εm, or not
mm = εm.
In the case of a neo-Hookean matrix filled with ideal dielectric

particles studied in Sec. 3, that is, for ψm(I1) = μm/2 in Eq. (28)
and Sp(IE5 ) = εp/2 in Eq. (29), the nonlinear algebraic equations
(32) admit as exact solutions z = μm and ξ = εp for arbitrary
deformations and arbitrary electric fields. It follows that the
free energy (30) reduces to the free energy (16) of Sec. 3 as
expected.
For an arbitrary non-Gaussian matrix filled with rigid particles,

that is, when μp =∞, the coefficient n(z) is linear in z while ω(z,
ξ) is independent of z:

n(z) = (1 − c)r(c)z, and
∂ω
∂z

(z, ξ) = 0

with

r(c) =
1

5(1 − c)|Ω0|
∫
Ω0

[1 − θp(X)]KklmnΓmkl,ndX (38)

where Γ solution of Eq. (34) when μp =∞. More simply put, the
physical meaning of n(z) entails that

n(z) =
μz

μm
and r(c) =

μ

(1 − c)μm
(39)

with μ the shear modulus of the composite given by Eq. (17)1 and
μm = 2ψ ′

m(3) the shear modulus of the matrix. It follows that I1 =
r(c)[I1 − 3] + 3 and that equation (32)1 admits the closed-form solu-
tion z = 2ψ ′

m(r(c)[I1 − 3] + 3) which leads in turn to the incom-
pressible free energy

Wr = (1 − c)ψm r(c)[I1 − 3] + 3( ) − cSp(I5)

+
cξ

2
I 5 +

ω(ξ) − ν(ξ)
2

IE4 −
ω(ξ)
2

IE5
(40)

where, again, ν(ξ) and ω(ξ) are defined by Eq. (33)2,3,
z = 2ψ ′

m(r(c)[I1 − 3] + 3), and ξ is solution of Eq. (32)2. If in addi-
tion the particles are conductors, εp =∞, Eq. (32)2 admits the
closed-form solution ξ=+∞ and the physical meaning of ν(ξ)
and ω(ξ) leads to

ν(ξ) = ε and ω(ξ) = m (41)

with ɛ and m the permittivity and dielectric coefficient of the com-
posite at hand defined by (17)2,3. It follows that the finite branch of
Eq. (30) reduces to the explicit expression

Wrc = (1 − c)ψm
μ

(1 − c)μm
[I1 − 3] + 3

( )
+
m − ε

2
IE4 −

m

2
IE5 (42)

For an arbitrary non-Gaussian matrix filled with liquid-like parti-
cles, that is, when μp = 0, the coefficient n(z) is linear in zwhile ω(z,
ξ) is independent of z:

n(z) = (1 − c)l(c)z and
∂ω
∂z

(z, ξ) = 0

with

l(c) =
1

5(1 − c)|Ω0|
∫
Ω0

[1 − θp(X)]KklmnΓmkl,ndX (43)

where Γ solution of Eq. (34) when μp = 0. More simply put, the
physical meaning of n(z) entails as well that

n(z) =
μz

μm
and l(c) =

μ

(1 − c)μm
(44)

with μ the shear modulus of the composite given by Eq. (17)1 and
μm = 2ψ ′

m(3) the shear modulus of the matrix. It follows that I1 =
l(c)[I1 − 3] + 3 and that Eq. (32)1 admits the closed-form solution
z = 2ψ ′

m(l(c)[I1 − 3] + 3) which leads in turn to the incompressible
free energy

Wl = (1 − c)ψm l(c)[I1 − 3] + 3( ) − cSp(I5)

+
cξ

2
I5 +

ω(ξ) − ν(ξ)
2

IE4 −
ω(ξ)
2

IE5 (45)

where, again, ν(ξ) and ω(ξ) are defined by Eq. (33)2,3,
z = 2ψ ′

m(l(c)[I1 − 3] + 3), and ξ is solution of Eq. (32)2. If here as
well the particles are conductors, εp =∞, Eq. (32)2 admits the
closed-form solution ξ=+∞ and the physical meaning of ν(ξ)
and ω(ξ) leads to

ν(ξ) = ε and ω(ξ) = m (46)

with ɛ and m the permittivity and dielectric coefficient of the com-
posite at hand defined by (17)2,3. It follows that the finite branch of
(30) reduces to the explicit expression

Wlc = (1 − c)ψm
μ

(1 − c)μm
[I1 − 3] + 3

( )
+
m − ε

2
IE4 −

m

2
IE5 (47)

4.2 Isotropic Distribution of Spherical Particles. Similar to
Sec. 3.2, we report below the specialization of the general free
energy (30)—and free energies (40) and (45)—to the practically rel-
evant cases of dielectric elastomer composites comprising isotropic
distributions of rigid- or liquid-like spherical particles.

4.2.1 Rigid Spherical Particles. For the case of rigid particles
(μp =∞), it follows from Remark 10 and Eq. (24) that the
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coefficients n(z), ν(ξ), and ω(ξ) are well approximated by

n(z) = (1 − c)−5/2z, ν(ξ) = εm +
3c(ξ − εm)εm

(2 + c)εm + (1 − c)ξ

ω(ξ) = mm +
3c(10 + 2c + 3c2)(ξ − εm)εmmm

5[(2 + c)εm + (1 − c)ξ]2

+
3c(1 − c)(5 + 3c)(ξ − εm)ξmm

5[(2 + c)εm + (1 − c)ξ]2
(48)

for volume fractions of particles within the range c∈ [0, 0.25] and
for all values of the material parameters μm, εm, mm, and ξ. Note
that, as expected, the above expressions reduce to expressions (24)
when z = μm and ξ = εp. The function r(c) defined by Eqs. (38)
and (39)2 is then given by r(c)= (1− c)−7/2 and it follows from
Eqs. (31) and (48) that the finite branch of the free energy (40)
reduces to

Wr,sph = (1 − c)ψm
I1 − 3

(1 − c)7/2
+ 3

( )
− cSp I r,sph

5

( )
+
cξ

2
I r,sph
5 +

ω(ξ) − ν(ξ)
2

IE4 −
ω(ξ)
2

IE5 (49)

where ν(ξ) and ω(ξ) are given by Eq. (48)2,3,

I r,sph
5 =

9ε2m
[(2 + c)εm + (1 − c)ξ]2

IE4 − 9εmmm[I
E
4 − IE5 ]

×
(5 + c − 6c2)ξ + (10 − c + 6c2)εm

[(2 + c)εm + (1 − c)ξ]3
(50)

and the variable ξ is defined implicitly as the solution of the non-
linear algebraic equation 2S′

p(I r,sph
5 ) − ξ = 0.

For the limiting case when the spherical particles are electric con-
ductors, the variable ξ is given explicitly by ξ=+∞ and Eq. (49)
reduces to

Wrc,sph = (1 − c)ψm
I1 − 3

(1 − c)7/2
+ 3

( )
−
(1 + 2c)εm
2(1 − c)

IE4

+
(5 + 10c + 9c2)mm

10(1 − c)
[IE4 − IE5 ]

4.2.2 Liquid-Like Spherical Particles. For the case when the
particles are liquid-like (μp = 0), Remark 10 with Eq. (26) entails
that the coefficients n(z), ν(ξ), and ω(ξ) defined by Eq. (33) are
well approximated by

n(z) = (1 − c)5/3z, ν(ξ) = εm +
3c(ξ − εm)εm

(2 + c)εm + (1 − c)ξ

ω(ξ) = mm +
c2 400 − 729c11/25
( )

(ξ − εm)2εm
500[(2 + c)εm + (1 − c)ξ]2

+
3cεm(5εmξ − 3εmmm − 2ξmm)

[(2 + c)εm + (1 − c)ξ]2
(51)

for volume fractions of particles within the range c∈ [0, 0.25] and
for all values of the material parameters μm, εm, mm, and ξ. Note
that, as expected, the above expressions reduce to expressions
(26) when z = μm and ξ = εp. The function l(c) defined by Eqs.
(43) and (44)2 is then given by l(c)= (1− c)2/3, and it follows
from Eqs. (31) and (51) that the finite branch of the free energy
(45) reduces to

Wl,sph = (1 − c)ψm (1 − c)2/3[I1 − 3] + 3
( )

− cSp I l,sph
5

( )
+
cξ

2
I l,sph
5 +

ω(ξ) − ν(ξ)
2

IE4 −
ω(ξ)
2

IE5 (52)

where ν(ξ) and ω(ξ) are given by Eq. (51)2,3,

I l,sph
5 =

9ε2m
[(2 + c)εm + (1 − c)ξ]2

IE4 − 3εm[I
E
4 − IE5 ]

×
2[(1 − 4c)εm + (1 − c)ξ]mm

[(2 + c)εm + (1 − c)ξ]3

[
+
(5000 − 3700c + 2187c36/25 − 2500c2)ε2m

250(1 − c)[(2 + c)εm + (1 − c)ξ]3

−
(1250 − 1650c + 729c36/25)εm

250(1 − c)[(2 + c)εm + (1 − c)ξ]2

]
(53)

and the variable ξ is defined implicitly as the solution of the nonlin-
ear algebraic equation

2S′
p(I l,sph

5 ) − ξ = 0 (54)

For the limiting casewhen the particles are electrically conducting,
the variable ξ is given explicitly by ξ=+∞ and Eq. (52) reduces to

Wlc,sph = (1 − c)ψm (1 − c)2/3[I1 − 3] + 3
( )

−
5(1 + 2c)εm
10(1 − c)

IE4

+ mm +
(400 − 729c11/25)c2εm

500(1 − c)2

[ ]
[IE4 − IE5 ]

4.2.3 Accuracy Assessment. To assess the accuracy of the free
energies (49) and (52) for arbitrary deformations and electric fields,
we report comparisons with full-field FE simulations, see Refs.
[26,27] for details about these simulations. These comparisons
also probe the specific functional form of Eqs. (49) and (52), that
is, their independence on the invariants I2 and IE6 . Similarly to
Sec. 3.2, this is achieved by following electromechanical loading
paths along which four of the five isotropic invariants I1, I2, IE4 ,
IE5 , I

E
6 are held constant while either I2 or IE6 is varied.

These results are reported in Fig. 5 and correspond to a dielectric
elastomer matrix with free energy (28) and elasticity characterized
by the Lopez-Pamies model [34]

ψm(I1) =
31−α1

2α1
μ1 Iα11 − 3α1
[ ]

+
31−α2

2α2
μ2 Iα21 − 3α2
[ ]

(55)

The material parameters μ1, μ2, α1, α2, εm, mm that enter in the
resulting free energy are listed in Table 1 and have been calibrated
to experimental data for both the mechanical response of VHB 4910
under uniaxial tension [43] and for its longitudinal apparent permit-
tivity when subjected to a biaxial pre-stretch [13]. Note that under a
uniaxial loading F= diag(λ−1/2, λ−1/2, λ) and in the absence of an
electric field E = 0, the uniaxial stress Sun implied by Eq. (5)1
with Eqs. (28) and (55) reads as

Sun =
λ3 − 1

2λ + λ4
∑2
r=1

31−αrμr(λ
2 + 2λ−1)αr (56)

while the through-thickness deformation-dependent apparent per-
mittivity ε̂m of a thin film of dielectric elastomer with free energy
(28) subjected to a biaxial stretch λb is given by2

ε̂m = mm + (εm − mm)λ
−4
b (57)

Comparisons between the model (28) and (55), that is, the uniaxial
stress (56) and apparent permittivity (57) and the experimental data
of Hossain et al. [43] and Qiang et al. [13] are shown in Fig. 4 for
illustrative purposes. It is clear from Fig. 4 that the choice of free

2This scalar deformation-dependent apparent permittivity ε̂m of interest corresponds
to the projection ε̂m = n · ε̂m(F)n of the tensorial apparent permittivity ε̂m given by Eq.
(4) when undergoing the biaxial stretch F = λb[I − n⊗ n] + λ−2b n⊗ n. Here, n stands
for the normal of the thin film.
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energy (28) with (55) and material parameters listed in Table 1 pro-
vides an accurate model for the standard dielectric elastomer VHB
4910 by 3M over a large range of deformations and electric fields.
Furthermore, for all the results shown inFig. 5, the elastic dielectric

behavior of the particles is characterized by the free energy(29) with

Sp(I
E
5 ) =

ε0
2
IE5 −

(psp)
2

3(εp − ε0)
ln

3(εp − ε0)




IE5

√
psp

( )[

− ln sinh
3(εp − ε0)





IE5

√
psp

( )( )]
(58)

andmaterial parametersμp, εp, andp
s
p listed inTable 2. Thesematerial

parameters correspond to the cases of rigid conducting particles, rigid
high-permittivity particles with polarization saturation, and liquid-
like conducting particles, representative of filler particles that have
been utilized in a number of experiments [14–18,20,21].
Now, within the class of dielectric elastomer composites of interest

here, Figs. 5(a) and 5(b) correspond to the case of a volume fraction
c= 0.05 of rigid conducting particles, Figs. 5(c) and 5(d) correspond
to the case of a volume fraction c= 0.05 of rigid high-permittivity
particles with polarization saturation, and Figs. 5(e) and 5( f ) corre-
spond to the case a volume fraction c= 0.15 of liquid-like conducting
particles. It is plain from Fig. 5 that the free energies (49) and (52) are
in good quantitative agreement with the corresponding FE simu-
lations for all three types of particles. It is also clear that the FE
simulations are by and large independent of I2 or IE6 , as are the free
energies (49) and (52). Similar comparisons for a wide range of
choices for ψm(I1), εm,mm, Sp(IE5 ), and εp, not included here for con-
ciseness, have shown that the free energies (49) and (52) are good
quantitative approximations of the free energy of non-Gaussian elas-
tomers with deformation-dependent apparent permittivity, character-
ized by Eq. (28), filled with isotropic distributions of rigid or liquid
particles, characterized by Eq. (29) with either μp =∞ or μp = 0.

5 Electrostrictive Response of Dielectric Elastomer
Composites With Deformation-Dependent
Apparent-Permittivity Matrix
In this final section, we deploy the proposed constitutive model to

probe the electrostrictive response of dielectric elastomer composites
comprising a matrix with deformation-dependent apparent permittiv-
ity. Results pertaining to arbitrary isotropic, two-phase, non-
percolative particulate microstructures are reported in Sec. 5.1
while corresponding specializations to the practically relevant cases
of rigid or liquid-like spherical particles are recorded in Sec. 5.2.
This section also contains results for three different classes of dielec-
tric elastomer composites, all made out of a VHB 4910 matrix filled
either by rigid conducting particles, rigid high-permittivity particles
with polarization saturation, or liquid-like conducting particles.
Finally, in an effort to further highlight the generality of the proposed
model and its usage for composites comprising particles that are not
spherical in shape, results for an isotropic distribution of randomly
oriented rigid conducting spheroidal particles are included in Sec. 5.3.

5.1 Arbitrary Isotropic, Two-Phase, Non-percolative
Particulate Microstructure. The prototypical experimental setup
utilized to probe the coupled electromechanical response of stretchable

dielectrics consists in measuring the compressive deformation—or
electrostriction—undergone when subjected to a uniform electric
field in the absence of stresses. This is typically achieved by layering
a thinandflat specimenof the activematerial betweendeformable elec-
trodes connected to an external battery. Consider then the electrome-
chanical states of a thin specimen subjected to prescribed first Piola–
Kirchoff stress S and Lagrangian electric field E of the form3

S = 0 and E = En (59)

Table 1 Material parameters μ1, μ2, α1, α2, εm, mm in the free-
energy function (28) with (55) fitted to the electromechanical
response of model VHB 4910 [13,43,44]

VHB 4910

μ1= 13.54 kPa μ2= 1.08 kPa
α1= 1.00 α2=−2.474
εm = 4.52 ε0 mm = 2.80 ε0

1

1.5

2

2.5

3

3.5

4

4.5

5

1 1.5 2 2.5 3 3.5 4

Experiment
Model

(a)

(b)

Fig. 4 The model (28) with (55) and the material parameters of
Table 1 compared with experimental data for the standard dielec-
tric elastomer VHB 4910: (a) uniaxial stress-stretch response in
the absence of electric fields (56) compared with the experimen-
tal data of Hossain et al. [43], (b) through-thickness deformation-
dependent apparent permittivity of a biaxially pre-stretched thin
film (57) compared with the experimental data of Qiang et al. [13]

3Given the thinness of the specimen and fashion in which the external electric field
is applied, it is reasonable to assume that there are no electric fields in the air surround-
ing the specimen.
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with n the normal of the thin specimen. The constitutive relations (36)
entail that the deformation gradientF andLagrangian electric displace-
ment D are of the form

F = λ−1/2[I − n⊗ n] + λn⊗ n and D = Dn (60)

with their non-trivial components defined by

λ 4 − λ +
ω(z, ξ)
n(z)

E2 = 0 and

D = ν(ξ) − ω(z, ξ) 1 −
1

λ2

( )[ ]
E (61)

The above expressions fully characterize the electrostrictive response
under conditions (59) of a non-Gaussian dielectric elastomer with
deformation-dependent apparent permittivity with free energy (28)
filled with any isotropic non-percolative distribution of particles
characterized by the free energy (29). We recall here that n(z), ν(ξ),
and ω(z, ξ) are defined by Eq. (33) with the variables z and ξ
solutions of the nonlinear algebraic equations (32) with (31) where
here, I1= λ2+2λ−1, I4=E2, and I5= λ−2E2. It follows from
Eq. (8)2,3 that Eq. (61)2 can be rewritten as

d = λ2ν(ξ) + 1 − λ2
( )

ω(z, ξ)
[ ]

e (62)

in terms of the non-trivial components of the Eulerian electric field e=
en= λ−1En andEulerian electric displacementd= dn= λDn. It is then
apparent that ε̂(λ, e) = λ2ν(ξ) + 1 − λ2

( )
ω(z, ξ) corresponds to the

apparent permittivity of the dielectric elastomer composite under elec-
trostriction loading (59).

5.2 Isotropic Distribution of Spherical Particles. While
the above expressions are quite general, we spell below out their
specializations to the cases of dielectric elastomer composites com-
prising isotropic distributions of rigid- or liquid-like spherical
particles.

5.2.1 Rigid Particles. For the case of rigid particles (μp =∞),
making use of Eq. (48) for n(z), ν(ξ), and ω(ξ) and of z =

Table 2 Material parameters μp, εp, and ps
p in the free-energy

function (29) with (58) chosen to represent rigid conducting
particles, rigid high-permittivity particles with polarization
saturation, and liquid-like conducting particles

Rigid conducting
particles

Rigid high-permittivity
particles with

polarization saturation
Liquid-like

conducting particles

μp =∞ μp =∞ μp =∞
εp =∞ εp = 100 ε0 εp =∞
psp =∞ psp = 10−4 C/m2 psp =∞

(a) (c) (e)

(d)(b) (f )

Fig. 5 Plots of the free energy W of a typical dielectric elastomer—described by the free energy (28) with (55) and material
parameters listed in Table 1—filled with (a) and (b) a volume fraction c=0.05 of rigid conducting particles, (c) and (d) a volume
fraction c=0.05 of rigid high-permittivity particles with polarization saturation, and (e) and (f) a volume fraction c=0.15 of
liquid-like conducting particles, described by the free energy (29) with (58) and material parameters listed in Table 2. The solid
lines (“Rig. Sph. Theory” and “Liq. Sph. Theory”) correspond to expressions (49) and (52) while the dashed lines (“Rig. Sph.
FE” and “Liq. Sph. FE”) correspond to full-field FE simulations.
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2ψ ′
m((1 − c)−7/2[I1 − 3] + 3) in Eqs. (61)1 and (62) leads to

λ4 − λ +
(1 − c)5/2ω(ξ)

2ψ ′
m

λ2 + 2λ−1 − 3

(1 − c)7/2
+ 3

( )E2 = 0

and d = λ2ν(ξ) + 1 − λ2
( )

ω(ξ)
[ ]

e (63)

where it is recalled for completeness that ν(ξ) and ω(ξ) are given by

ν(ξ) = εm +
3c(ξ − εm)εm

(2 + c)εm + (1 − c)ξ

ω(ξ) = mm +
3c(10 + 2c + 3c2)(ξ − εm)εmmm

5[(2 + c)εm + (1 − c)ξ]2

+
3c(1 − c)(5 + 3c)(ξ − εm)ξmm

5[(2 + c)εm + (1 − c)ξ]2

the variable ξ is defined implicitly as the solution of the nonlinear
algebraic equation 2S′

p(I r,sph
5 ) − ξ = 0 with Eq. (50) reading here as

I r,sph
5 =

9ε2m
[(2 + c)εm + (1 − c)ξ]2

E2 − 9εmmm[1 − λ−2]E2

×
(5 + c − 6c2)ξ + (10 − c + 6c2)εm

[(2 + c)εm + (1 − c)ξ]3

and e= λ−1E. We emphasize here that the above expressions are
valid for arbitrary choices of functions ψm(I1) and Sp(IE5 ) in Eqs.
(28) and (29) to describe the non-Gaussian elasticity of the dielectric
elastomer matrix and the dielectric response of the rigid particles.
In the limiting case when the particles are electrically conducting,

the variable ξ is given explicitly by ξ=+∞ and the electrostriction
response (63) reduces to

λ4 − λ +
(1 − c)3/2(5 + 10c + 9c2)mm

10ψ ′
m

λ2 + 2λ−1 − 3

(1 − c)7/2
+ 3

( ) E2 = 0

and d = λ2
(1 + 2c)εm
(1 − c)

+ 1 − λ2
( ) (5 + 10c + 9c2)mm

5(1 − c)

[ ]
e

(64)

5.2.2 Liquid-Like Particles. For the case of liquid-like particles
(μp = 0), making use of Eq. (51) for n(z), ν(ξ), and ω(ξ) and of z =
2ψ ′

m((1 − c)2/3[I1 − 3] + 3) in Eqs. (61)1 and (62) leads to

λ4 − λ +
(1 − c)−5/3ω(ξ)

2ψ ′
m((1 − c)2/3[λ2 + 2λ−1 − 3] + 3)

E2 = 0

and d = λ2ν(ξ) + 1 − λ2
( )

ω(ξ)
[ ]

e (65)

(a) (c) (e)

(d)(b) (f )

Fig. 6 Electrostriction and dielectric response—defined by (59)—of dielectric elastomer composites with volume fractions c=
0.05, 0.15, 0.25 of rigid conducting spherical particles described by the free energy (29) with (58) and material parameters listed
in Table 2. Particles are isotropically dispersed in a dielectric elastomer, either VHB 4910, characterized by the free energy (28)
with (55) and material parameters listed in Table 1 wheremm ≠ εm, or the fictional ideal elastic dielectric elastomer IDE character-
ized by the free energy (28) with (55) and material parameters listed in Table 3 where mm = εm. Solid lines (“Rig. Sph. Theory”)
correspond to the proposed model (64), dashed lines (“Rig. Sph. FE”) correspond to full-field FE simulations, and dotted lines
corresponds to the unfilled VHB 4910 and IDE matrix (c=0).
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where it is recalled for completeness that ν(ξ) and ω(ξ) are in this
case given by

ν(ξ) = εm +
3c(ξ − εm)εm

(2 + c)εm + (1 − c)ξ

ω(ξ) = mm +
c2 400 − 729c11/25
( )

(ξ − εm)2εm
500[(2 + c)εm + (1 − c)ξ]2

+
3cεm(5εmξ − 3εmmm − 2ξmm)

[(2 + c)εm + (1 − c)ξ]2

the variable ξ is defined implicitly as the solution of the nonlinear
algebraic equation 2S′

p(I l,sph
5 ) − ξ = 0 with Eq. (53) reading here as

I l,sph
5 =

9ε2m
[(2 + c)εm + (1 − c)ξ]2

E2 − 3εm[1 − λ−2]E2

×
2[(1 − 4c)εm + (1 − c)ξ]mm

[(2 + c)εm + (1 − c)ξ]3

[
+
(5000 − 3700c + 2187c36/25 − 2500c2)ε2m

250(1 − c)[(2 + c)εm + (1 − c)ξ]3

−
(1250 − 1650c + 729c36/25)εm

250(1 − c)[(2 + c)εm + (1 − c)ξ]2

]
and e= λ−1E. We emphasize here that the above expressions are
valid for arbitrary choices of functions ψm(I1) and Sp(IE5 ) in Eqs.

(28) and (29) to describe the non-Gaussian elasticity of the dielec-
tric elastomer matrix and the dielectric response of the liquid-like
particles.
In the limiting case when the particles are electrically conducting,

the variable ξ is given explicitly by ξ=+∞ and the electrostriction
response (65) reduces to

λ4 − λ +
(1 − c)−5/3 mm +

(400 − 729c11/25)c2εm
500(1 − c)2

[ ]
2ψ ′

m (1 − c)2/3[λ2 + 2λ−1 − 3] + 3
( ) E2 = 0 and

d = λ2
(1 + 2c)εm
(1 − c)

+ 1 − λ2
( )

× mm +
(400 − 729c11/25)c2εm

500(1 − c)2

( )[ ]
e (66)

5.2.3 Electrostriction Response. Sample results for the electro-
strictive response—defined by Eq. (59)—of three different classes of
dielectric elastomer composites composed of a VHB 4910 matrix
filled by either rigid conducting spherical particles, rigid high-
permittivity spherical particleswith polarization saturation, or liquid-
like conducting spherical particles, are presented, labeled as “VHB
4910 matrix (mm ≠ εm),” in Figs. 6–8, respectively. A second set
of results, identified as “IDE matrix(mm = εm),” is included in
Figs. 6–8 to illustrate the influence of the deformation-dependent
apparent permittivity of the matrix on the response of the composite.
These results pertain to the same classes of dielectric elastomer com-
posites that now comprise as matrix phase an ideal dielectric elasto-
mer that exhibits the same elastic response as VHB 4910 but with a
deformation-independent apparent permittivity equal in value to the

(a) (c) (e)

(d)(b) (f )

Fig. 7 Electrostriction and dielectric response—defined by (59)—of dielectric elastomer composites with volume fractions c=
0.05, 0.15, 0.25 of rigid high-permittivity spherical particles with polarization saturation described by the free energy (29) with
(58) andmaterial parameters listed in Table 2. Particles are isotropically dispersed in a dielectric elastomer, either VHB 4910, char-
acterized by the free energy (28) with (55) and material parameters listed in Table 1 where mm ≠ εm, or the fictional ideal elastic
dielectric elastomer IDE characterized by the free energy (28) with (55) and material parameters listed in Table 3 where
mm = εm. Solid lines (“Rig. Sph. Theory”) correspond to the proposedmodel (63), dashed lines (“Rig. Sph. FE”) correspond to full-
field FE simulations, and dotted lines corresponds to the unfilled VHB 4910 and IDE matrix (c=0).
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permittivity of VHB 4910, εm = mm = 4.48 ε0. This fictional ideal
dielectric elastomer is referred to as “IDE” and the material parame-
ters that describe its electromechanical response (28) with (55) are
listed in Table 3 for completeness.
More specifically, for all results shown in Figs. 6–8, the elastic

dielectric response of the VHB 4910 (IDE) matrix is described by
the free energy (28) with (55) and the choice of material properties
listed in Table 1 (Table 3), while the dielectric elastic response of
the three types of particles is described by the free energy (29)
with (58) and the corresponding choices of material properties
listed in Table 2. Parts (a), (c), and (e) of Figs. 6–8 show the com-
pressive electrostriction deformation λ of these dielectric elastomer
composites as a function of the applied Lagrangian electric field E,
while parts (b), (d ), and ( f ) show their dielectric response in its
Eulerian form. Results presented with a solid line in Figs. 6–8 cor-
respond to the proposed model given by Eqs. (64),(63), and (66) for
three volume fractions c= 0.05, c= 0.15, c= 0.25 of particles. Cor-
responding FE results for isotropic distributions of monodisperse
spherical inclusions are also included with a dashed line to further
illustrate the accuracy of the proposed model, see Ref. [27] for
details. Results pertaining to the unfilled VHB 4910 or IDE
matrix (c= 0) are reported with a dotted line for comparison
purposes.
A quick glance at Figs. 6–8 suffices to realize that whether the

matrix is an ideal dielectric (IDE with mm = εm) or not (VHB
4910 with mm ≠ εm) significantly impacts the electromechanical
response of the three classes dielectric elastomer composites

under scrutiny here. In particular, it is clear from parts (a), (c),
and (e) of these figures that the deformation-dependent apparent
permittivity of VHB 4910 significantly reduces its electrostriction
and that of the corresponding composites when compared with
the electrostriction of the IDE matrix and of its composites. It is
also apparent from parts (b), (d ), and ( f ) of these figures that the
nature of the dielectric response of the VHB 4910 (mm ≠ εm) and
IDE (mm = εm) matrix materials significantly impacts the dielectric
response of dielectric elastomer composites. Note that granted (62)2,
the slope of the curves in parts (b), (d ), and ( f ) of Figs. 6–8
corresponds to the apparent permittivity of the material when under-
going electrostrictive deformations. It is then clear that the sensitivity
of the apparent permittivity on the deformations of such composite
undergoes strongly depends on whether the matrix is an ideal

(a) (c) (e)

(d)(b) (f )

Fig. 8 Electrostriction and dielectric response—defined by (59)—of dielectric elastomer composites with volume fractions c=
0.05, 0.15, 0.25 of liquid-like conducting spherical particles described by the free energy (29) with (58) and material parameters
listed in Table 2. Particles are isotropically dispersed in a dielectric elastomer, either VHB 4910, characterized by the free
energy (28) with (55) and material parameters listed in Table 1 where mm ≠ εm, or the fictional ideal elastic dielectric elastomer
IDE characterized by the free energy (28) with (55) and material parameters listed in Table 3 where mm = εm. Solid lines (“Liq.
Sph. Theory”) correspond to the proposed model (66), dashed lines (“Liq. Sph. FE”) correspond to full-field FE simulations,
and dotted lines corresponds to the unfilled VHB 4910 and IDE matrix (c=0).

Table 3 Material parameters μ1, μ2, α1, α2, εm, mm in the
free-energy function (28) with (55) of a fictional ideal dielectric
elastomer IDE that exhibits the same elastic response as VHB
4910 and has a deformation-independent apparent permittivity
equal in value to the permittivity of VHB 4910

IDE

μ1= 13.54 kPa μ2= 1.08 kPa
α1= 1.00 α2=−2.474
εm = 4.52 ε0 mm = 4.52 ε0
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dielectric4 (mm = εm) or not (mm ≠ εm). This strong effect prompts
appropriately accounting the deformation-dependent apparent-per-
mittivity of dielectric elastomers in constitutive models describing
dielectric elastomer composites they can be part of.
The results shown in Figs. 6–8 also provide direct insight into the

effects of the addition of different types of particles to a dielectric
elastomer with deformation-dependent apparent permittivity such
as VHB 4910. It is plain for instance from the results of Fig. 6
that the isotropic addition of rigid conducting spherical particles
to dielectric elastomers does not significantly changes their electro-
striction but does increase their dielectric response. These results
reveal the balance between the competing effects of increased stiff-
ness (n(z) > μm) and of increased dielectric (ν(ξ) > εm) and electro-
strictive (ω(ξ) > mm) properties. This is in contrast with available
experimental results [16,20] which have been conjectured [27,45]
to result from the presence of space charges at the lengthscale of
the composites’ microstructures.
On the contrary, results presented in Fig. 7 show that the isotropic

addition of rigid high-permittivity spherical particles with polariza-
tion saturation significantly reduces the electrostriction and dielec-
tric response of the material. In addition to the increased stiffness
(n(z) > μm), this stems from the fact that the magnitude of the
applied electric field increases, the solution to the nonlinear alge-
braic equation 2S′

p(I5) − ξ = 0 decreases from ξ = εp when |E|=
0 to ξ= ɛ0 in the limit of infinitely large electric fields, |E|→∞.
This leads via ν(ξ) < εm and ω(ξ) < mm to the reduced electrostric-
tion and dielectric response observed in Fig. 7.
Finally, results presented in Fig. 8 indicate that both the electro-

striction and dielectric response of the matrix are enhanced by the
addition of liquid-like conducting spherical particles. This is a
result of the reduction in the stiffness of the material (n(z) < μm)
combined with its increased dielectric (ν(ξ) > εm) and electrostric-
tive (ω(ξ) > mm) properties from the addition of soft conducting
particles.

5.3 Isotropic Distribution of Randomly Oriented Rigid
Conducting Spheroidal Particles. With the aim of further high-
lighting the use of the proposed framework for arbitrary isotropic,
two-phase, non-percolative particulate microstructures, we report

below sample results for the electrostrictive response of VHB
4910 filled with a volume fraction c= 0.07 of randomly oriented
rigid conducting prolate spheroidal particles with aspect ratio ϱ=
1.4, see Fig. 9(a) for the realization at hand. As above, VHB
4910 is taken to be characterized by the free energy(28) with (55)
and material parameters listed in Table 1 while the particles are
characterized by the free energy (29) with (58) and material param-
eters listed in Table 2.
Given that the particles are rigid and conductors, the macro-

scopic elastic dielectric response of the composite at hand is
given by Eq. (42) and its electrostrictive response (61) and
(62) reduces to

λ4 − λ +
μmm

2μψ ′
m

μ

(1 − c)μm
[λ2 + 2λ−1 − 3] + 3

( )E2 = 0

and d = λ2ε + 1 − λ2
( )

m
[ ]

e (67)

The above expressions depend on the elastic response of the
VHB 4910 matrix ψm(I1) given by (55) and its shear modulus
μm = 2ψ ′

m(3) = μ1 + μ2, and on of the shear modulus μ, permit-
tivity ɛ, and electrostrictive coefficient m of the composite at
hand. The shear modulus μ, permittivity ɛ, and electrostrictive
coefficient m of the present realization have been computed
numerically according to their definitions (17)—see Remark 5
for details—and their values are reported in Table 4 with that
of the shear modulus of the matrix μm. Figures 9(b) and 9(c)
illustrate the good agreement between the electrostrictive
response (67) with (55) and the parameters in Table 4, shown
with a solid line, and that obtained from FE simulations
plotted with a dashed line.

(a) (b) (c)

Fig. 9 Electrostriction and dielectric response—defined by (59)—of VHB 4910 isotropically filled with a volume fraction c=0.07 of
randomly oriented rigid conducting prolate spheroids with aspect ratio ϱ=1.4. VHB 4910 is characterized by the free energy (28)
with (55) and material parameters listed in Table 1 and the particles are described by the free energy (29) with (58) and material
parameters listed in Table 2. Solid lines (“Theory”) correspond to the proposed model (67) with (55) and the parameters in
Table 4 while dashed lines (“FE”) correspond to full-field FE simulations.

Table 4 Shear modulus μ, permittivity ɛ, and electrostrictive
coefficient m of an isotropic distribution of a volume fraction
c=0.07 of randomly oriented rigid conducting prolate
spheroids with aspect ratio ϱ=1.4 in VHB 4910

Randomly oriented rigid conducting prolate spheroids in VHB 4910

μm = 14.62 kPa c= 0.07
μ= 17.31 kPa ɛ= 5.55 ɛ0 m= 3.42 ɛ0

4Recall that a dielectric elastomer composite made out of an ideal dielectric matrix
(mm = εm) is not itself in general an ideal dielectric—see Remark 6—but note that this
trait is very mild for the case of rigid particles but is much more apparent for the case of
liquid-like particles, see, e.g., Figs. 6–8( f ).
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