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a b s t r a c t

A simple explicit result is introduced for the effective shear modulus of a random isotropic suspension
of rigid n-spheres (n = 3, 2), each having identical size, firmly embedded in an isotropic incompressible
elastic matrix. By construction, the result is in quantitative agreement with all the classical rigorous
asymptotic results in the dilute (c ↘ 0) and percolation (c ↗ pn) limits, as well as with new
computational results for intermediate values c ∈ [0, pn] of the volume fraction of n-spheres.
Moreover, as demonstrated by means of iterated homogenization, the proposed result has the added
merit of being realizable by a certain class of random isotropic suspension of rigid n-spheres with
infinitely many sizes. That the proposed result is descriptive of both isotropic suspensions with
monodisperse and with (a specially selected class of) polydisperse rigid n-spheres is nothing more
than a manifestation of the richness in behaviors that suspensions of polydisperse rigid n-spheres can
exhibit.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

The determination of the effective shear modulus µn of a
random isotropic suspension of monodisperse rigid n-spheres1
(n = 3, 2) firmly embedded in an isotropic incompressible elastic
matrix is a fundamental problem in mechanics that has had a long
and rich history since the pioneering work of Einstein [2,3]. In
the next few paragraphs, we summarize the various milestones
accomplished throughout the years until present times. In Sec-
tion 2, we introduce the main result of this Letter, to wit, a simple
explicit formula for µn that is valid from the dilute limit to the
percolation threshold. As elaborated in that same section, the key
properties of the proposed result for µn are that — in addition to
eing simple and explicit — it is in quantitative agreement with
ll the rigorous asymptotic and computational results known to
ate and, furthermore, it is realizable. The details of its realizabil-
ty are presented in Section 3. We close in Section 4 by recording
few final remarks.

∗ Corresponding author at: Department of Civil and Environmental
ngineering, University of Illinois, Urbana–Champaign, IL 61801, USA.

E-mail addresses: victor.lefevre@northwestern.edu (V. Lefèvre),
amies@illinois.edu (O. Lopez-Pamies).
1 In this work, we make use of the terminology usually employed by
eometers — and not that employed by topologists — who refer to circles as
-spheres and spheres as 3-spheres; see, e.g., Section 7.3 in [1].
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The dilute limit. As alluded to above, the first main result in the
literature is famously due to Einstein [2,3], who worked out the
exact solution2 in the asymptotic limit of small volume fraction
c of 3-spheres:

µ3 = µ +
5
2
µ c + O(c2); (1)

throughout this Letter, µ stands for the shear modulus of the
matrix material.

The corresponding solution for the case of 2-spheres can be
extracted from the succeeding and also celebrated work of Es-
helby [5]:

µ2 = µ + 2µ c + O(c2). (2)

Later (see, e.g., Chapter 17 in [6]), it was recognized that the
dilute solution for n ≥ 2 dimensions (not just n = 3 and 2) can
actually be written in the compact form

µn = µ +

(
1 +

n
2

)
µ c + O(c2). (3)

or reference in the sequel, we note that for the more general case
hen the n-spheres are not rigid but just incompressible with

2 Einstein [2,3] carried out his analysis within the context of Stokes flow,
hich, as well known, is mathematically equivalent to that of linear elastostatics
t a fixed instant in time. Some four decades later, Smallwood [4] transcribed
he analysis to linear elastostatics.
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hear modulus µs, the corresponding effective shear modulus
eads

µn = µ +
(2 + n)(µs − µ)

nµ + 2µs
µ c + O(c2). (4)

Higher-order correction to the dilute limit. Several works of in-
creasing refinement targeted the computation of the correction of
O(c2) in the Einstein formula (1) for 3-spheres. Among these [7–
11], the result

µ3 = µ +
5
2
µ c + 5.01µ c2 + O(c3) (5)

ue to Chen and Acrivos [11] is the most accurate one, where the
oefficient 5.01 is exact to within ±0.2%.
We are not aware of analogous analytical efforts on the com-

utation of the correction of O(c2) in the result (2) for 2-spheres;
ee, however, [12] for results on a hexagonal suspension of 2-
pheres. Nevertheless, the recent computations of Lefèvre et al.
13] indicate that

µ2 = µ + 2µ c + 3.64µ c2 + O(c3), (6)

where the coefficient 3.64 is believed to be accurate to within
±5%.

For the mathematical analysis of the problem, the interested
reader is referred to the recent contribution [14] and references
therein.

Percolation. Because of the mechanical rigidity of the n-spheres,
the effective shear modulus µn will grow unbounded as the
olume fraction c approaches the percolation threshold pn of the

suspension. We thus have the asymptotic result

lim
c↗pn

µn = +∞. (7)

For the case of 3-spheres, experiments [15] and computations [16,
17] have shown that

p3 ≈ 0.64. (8)

For the case of 2-spheres, on the other hand, computations [16,
17] have shown that

p2 ≈ 0.90. (9)

Here, it is important to emphasize that the percolation thresholds
(8) and (9) are roughly upper bounds. Indeed, depending on the
construction process of the suspensions, somewhat lower values
may already lead to percolation.

Computational results. Advances over the past two decades in
computational resources and methods for solving the underly-
ing elastostatics equations have allowed to generate numerical
approximations for µn for finite volume fractions c of n-spheres
eyond the dilute limit. The basic idea consists in approximating
he random isotropic suspensions of interest here as periodic
uspensions where the periodically repeated unit cell contains a
ufficiently large number of randomly distributed n-spheres so
hat the homogenized elastic response is isotropic to within a
igh degree of accuracy [18]. Finite-element (FE) results (based
n hybrid finite elements to deal with the incompressibility of the
atrix material) for 3-spheres have been presented — to various
egrees of accuracy — in [19,20] up to c = 0.40 and in [21–23]
p to c = 0.55. For the case of 2-spheres, results up to c = 0.35
ave been presented in [24] and up to c = 0.50 in [25].
In two recent contributions, Lefèvre et al. [13] and Lefèvre [26]

ave provided the most comprehensive and accurate set of com-
utational results yet for suspensions with both 3- and 2-spheres.
n a nutshell, they examined tens of thousands of realizations for
nit cells containing up to 960 randomly distributed 3-spheres
2

Fig. 1. FE results from [13,26] for the effective shear modulus µn of random
isotropic suspensions of monodisperse rigid n-spheres in an isotropic incom-
pressible elastic matrix. The results are shown (in semi-log scale) normalized
by the shear modulus of the matrix µ as a function of the volume fraction c
of 3-spheres in part (a) and of 2-spheres in part (b). For direct comparison, the
proposed formula (10) is also included (solid lines) in the figures.

with volume fractions in the range c ∈ [0, 0.50] and randomly
distributed 2-spheres with volume fractions in the range c ∈

[0, 0.60] for several fixed values of the minimum distance d
between the n-spheres (more on this in Section 4.1 below). They
then filtered out the realizations that did not exhibit an isotropic
elastic response to within a stringent tolerance and averaged
the ones that did for each volume fraction c and minimum
inter-n-sphere distance d that they considered. Out of those, as
expected [27], the maximum difference between any two real-
izations with the same c and d was less than 2%. Their results for
d = 0+ are presented in Fig. 1(a) for the case of 3-spheres and in
Fig. 1(b) for that of 2-spheres.

2. The main result and its properties

In this section, we show that the explicit formula Eq. (10)
given in Box I is in quantitative agreement with all the analytical
and computational results outlined above and hence that it pro-
vides an accurate description for the effective shear modulus of
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µn =
µ[(

1 + αn

(
βn +

(
c
pn

)n−1
)(

c
pn

)2
)(

1 −
c
pn

)] (2+n)pn
2

with

⎧⎪⎪⎪⎨⎪⎪⎪⎩

{
α3 = 0.635
β3 = 0.027{
α2 = −0.299
β2 = 0.796

, n = 3, 2. (10)

Box I.
h
m
K

t
a
b
f

n

w

µ̂

d

random isotropic suspension of monodisperse rigid n-spheres,
his for any volume fraction c ∈ [0, pn] from the dilute limit to
he percolation threshold pn.

emark 1 (The Dilute Limit). In the limit as the volume fraction
↘ 0, the effective shear modulus (10)1 reduces asymptotically
o

µn =µ +

(
1 +

n
2

)
µ c+

(2 + n)(2 + 2pn + npn − 4αnβn)
8pn

µ c2 + O(c3). (11)

hus, the formula (10) agrees identically with the exact dilute
esult (3).

emark 2 (Higher-order Correction to the Dilute Limit). For the
ase of 3-spheres when the percolation threshold is given by (8),
he asymptotic result (11) specializes to

µ3 = µ +
5
2
µ c + 5.01µ c2 + O(c3). (12)

n the other hand, for the case of 2-spheres when the percolation
hreshold is given by (9), the result (11) specializes to

µ2 = µ + 2µ c + 3.64µ c2 + O(c3). (13)

hus, the formula (10) also agrees identically with the higher-
rder asymptotic results (5) and (6).

emark 3 (Percolation). It is trivial to verify that the effective
hear modulus (10) grows unbounded as the volume fraction c
f n-spheres approaches the percolation threshold pn, and hence
hat it satisfies the asymptotic result (7).

emark 4 (Comparison with Computational Results). Fig. 1 shows
omparisons between the formula (10) and the computational
esults in [13,26]. It is plain that both sets of results are in good
uantitative agreement for all volume fractions c for which the
omputational results are available.

emark 5 (Connection with the Classical Differential Scheme). The
ormula (10) can be thought of as a generalization of the classical
ifferential-scheme (DS) result [28–30]

µDSn =
µ

(1 − c)
2+n
2

(14)

or the effective shear modulus of an isotropic suspension of n-
pheres with infinitely many sizes in that the volume fraction c is
e-scaled by the percolation threshold pn, c ↦→ c/pn. A re-scaling
f this type, which can be traced back to the work of Eilers [31],
as been used heuristically— and, in particular, disconnected from
he differential scheme [28] — by countless authors in an at-
empt to account for percolation in the analogous problem of the
etermination of the viscosity of suspensions of rigid 3-spheres
n a Newtonian fluid; see, e.g., the review articles [32,33] and
eferences therein. Among the numerous heuristic formulas that
3

ave been proposed with the re-scaling c ↦→ c/p3 in the fluids
echanics literature, it is worth noting that the one proposed by
rieger and Dougherty [34]

µKD =
µ(

1 −
c
p3

) 5
2 p3

(15)

falls squarely within the functional form of the effective shear
modulus (10)1. Indeed, the Krieger–Dougherty formula (15) can
be viewed as a special case of the formula (10)1 for the choice of
coefficient α3 = 0 when n = 3.

Remark 6 (Realizability). The formula (10) is not ‘‘just’’ a formula
hat happens to be in agreement with the above-summarized
nalytical and computational results, but has also the merit to
e realizable. Precisely, as elaborated in the next section, the
ormula (10) can be shown to be the exact homogenization solution
for the effective shear modulus of a certain class of random
isotropic suspensions of rigid n-spheres with infinitely many sizes.
As a result, it is guaranteed to satisfy all pertinent physical and
mathematical restrictions (e.g., bounds) on the elastic response of
isotropic suspensions of rigid n-spheres. That the effective shear
modulus (10) is descriptive of both isotropic suspensions with
monodisperse and with (a specially selected class of) polydisperse
rigid n-spheres is nothing more than a manifestation of the rich-
ess in behaviors that suspensions of polydisperse rigid n-spheres

can exhibit.

3. Realizability

It follows immediately from use of the Eshelby solution (4)
in the generalized differential scheme originally introduced by
Norris [35], and later made rigorous by Avellaneda [36], that the
first-order nonlinear ordinary differential equation (ODE)

(1 − φ1(t) − φ2(t))
dµ̂n

dt
(t) =

[
(1 − φ2(t))

dφ1

dt
(t) + φ1(t)×

dφ2

dt
(t)
]
(2 + n)(µ − µ̂n(t))

nµ̂n(t) + 2µ
µ̂n(t) +

[
(1 − φ1(t))

dφ2

dt
(t)+

φ2(t)
dφ1

dt
(t)
]
2 + n
2

µ̂n(t) t ∈ (0, 1], (16)

ith initial condition

n(0) = µ, (17)

efines the effective shear modulus

µn = µ̂n(1) (18)

for a large class of random isotropic suspensions of n-spheres
of infinitely many sizes firmly embedded in an isotropic in-
compressible elastic matrix with shear modulus µ. In Eq. (16),
φ1(t) and φ2(t) stand for non-negative continuous functions of
choice subject to the constraints that φ1(t) + φ2(t) ≤ 1, the
combinations φ (t)/(1−φ (t)−φ (t)) and φ (t)/(1−φ (t)−φ (t))
1 1 2 2 1 2
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E(γn; c) =
2γn

2γn − n c
ln

⎡⎢⎢⎢⎢⎢⎢⎣
(2 + n)c

2(c + γn) + (n c − 2γn)

[(
1 + αn

(
βn +

(
c
pn

)n−1
)(

c
pn

)2
)(

1 −
c
pn

)]−
(2+n)pn

2

⎤⎥⎥⎥⎥⎥⎥⎦+

ln

⎡⎢⎢⎢⎢⎣ 1 − c − γn(
1 + αn

(
βn +

(
c
pn

)n−1
)(

c
pn

)2
)pn (

1 −
c
pn

)pn

⎤⎥⎥⎥⎥⎦ = 0. (19)

Box II.
4

4

re monotonically increasing functions of t , φ1(0) = φ2(0) = 0,
nd φ2(1) = c , where, again, c stands for the volume fraction of
-spheres in the suspension. From a computational point of view,
e remark that the ODE (16) needs to be solved from the initial
ondition (17) at t = 0 up to t = 1, as its solution then µ̂n(1)
efines the effective shear modulus (18) of the suspension.
The specific choice of functions φ1(t) and φ2(t) defines the

ype of suspension being considered, that is, the specific sizes
nd spatial distributions of the n-spheres. For instance, taking
1(t) = 0 and φ2(t) = c t leads to the classical DS result (14). It
s not difficult to show that the result (10) proposed in this work
elongs to the more general family of ‘‘radial’’ construction paths

1(t) = γn(c) t and φ2(t) = c t,

here γn(c) is not zero but rather defined implicitly as the small-
est positive root of the nonlinear algebraic equation (19) given in
Box II. In this last expression, we have omitted the argument c
n γn for simplicity and recall that the percolation threshold pn is
given by (8) and (9) for 3- and 2-spheres. More importantly, the
coefficients αn and βn in (19) are arbitrary so long as they lead
to real solutions for γn in the range 0 ≤ γn ≤ 1 − c. Different
choices of αn and βn lead to different spatial distributions of n-
pheres and hence to different solutions for the effective shear
odulus µn of the resulting suspension. For instance, the choice

α3 = 0 leads to the Krieger–Dougherty formula (15) thereby
demonstrating that this heuristically-derived classical result is in
fact realizable by a certain class of random isotropic suspension
of rigid 3-spheres with infinitely many sizes. More importantly,
the specific values (10)2 for αn and βn are the ones that happen
o best fit the FE results in Fig. 1, at the same time that they also
ead to the exact asymptotic results (12), (13), and (7).

While Eq. (19) does not admit an explicit solution for γn, it is
simple matter to solve it numerically. Fig. 2 provides plots of
uch solutions when αn and βn take the values (10)2. One point
orth remarking from them for both 3- and 2-spheres is that the
alue of γn at percolation, when c = pn, is given by γn = 1 − pn.
We close this section by emphasizing that even though the

ormula (10) is exact for the effective shear modulus of the
lass of random isotropic suspensions of n-spheres with infinitely
any sizes defined by the ODE (16) with (17)–(19), it is also
symptotically exact in the dilute (up to O(c2)) and percolation
imits for the effective shear modulus of the class of monodisperse
uspensions of interest here. Although quantitatively accurate for
ntermediate values of the volume fraction c of n-spheres, the
ormula (10) is not expected to be exact beyond those asymptotic
imits for the monodisperse suspensions.
4

Fig. 2. Plots of the variable γn defined by the nonlinear algebraic equation (19),
with percolation thresholds (8), (9), and coefficients (10)2 , as a function of the
volume fraction c of n-spheres.

. Final comments

.1. Suspensions with a minimum distance d between the n-spheres

The result (10) applies to isotropic suspensions where the n-
spheres are not allowed to overlap, but other than that their
locations are not subject to any separation constraint. In par-
ticular, the minimum distance d between any two n-spheres
could be vanishingly small. Isotropic suspensions where the n-
spheres are still randomly distributed but the minimum distance
d between them is restricted to be larger than a certain imposed
threshold — this is straightforward to accomplish in silico, while

Table 1
Values of the coefficients α2 and β2 in the effective shear modulus (10)1 for
random isotropic suspensions of 2-spheres of radius R with minimum distance
d between them.
d/R α2 β2

0+ −0.299 0.796
0.01 −0.278 0.820
0.02 −0.208 1.051
0.05 −0.055 3.424
0.10 0.144 −0.966
0.20 0.309 −0.129
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Fig. 3. Comparison between the formula (10)1 , with the coefficients α2 and
β2 given in Table 1, and the computational results from [26] for the effective
shear modulus of random isotropic suspensions of monodisperse rigid 2-spheres
wherein the minimum distance d between the 2-spheres is a fraction of their
radius R. The results are shown normalized by the shear modulus of the matrix µ

for d/R = 0+, 0.05, and 0.20 as functions of the volume fraction c of 2-spheres.
For reference, the Hashin–Shtrikman (HS) lower bound (23) is also included in
the figure.

in practice chemical treatments on the surfaces of the n-spheres,
for instance, may have the same effect — may feature a softer
elastic response, especially at larger volume fractions c of n-
spheres [13,26]. It turns out that the formula (10)1 can also
provide an accurate description for the effective shear moduli of
those suspensions by appropriately calibrating the value of its
coefficients αn and βn in terms of the minimum inter-n-sphere
istance d.
By way of an example, Table 1 presents the calibrated values

of α2 and β2 for the isotropic suspensions investigated compu-
tationally in [13,26] featuring a minimum distance between the
2-spheres of 1%, 2%, 5%, 10%, and 20% of their radius R; the
values (10)2 for α2 and β2 corresponding to d/R = 0+ are
also included in the table for direct comparison. Interestingly
enough, straightforward calculations show that the formula (10)1
evaluated at all the pairs of coefficients α2 and β2 listed in Table 1
for d/R = 0.01, 0.02, 0.05, 0.10, 0.20 remains solution of (16)
with (17)–(19) and hence realizable.

Fig. 3 confronts the formula (10)1, with the values given in
Table 1 for α2 and β2, to the computational results in [26] for
suspensions with minimum inter-2-sphere distances d/R = 0.05
and 0.20; the results for d/R = 0+ are also included for direct
comparison. Three observations are in order. First, the formula
(10)1 is indeed in good quantitative agreement with the computa-
tional results. Second, the effective shear modulus of suspensions
of monodisperse 2-spheres is largely insensitive to the minimum
distance between the 2-spheres up to a volume fraction of around
c = 0.20. For larger volume fractions, suspensions with larger
minimum inter-2-sphere distances exhibit a sizably smaller ef-
fective shear modulus. Nevertheless, the effect of a minimum
inter-2-sphere distance d/R > 0 is already present at O(c2).
Indeed, the evaluation of the asymptotic expression (11) at the
values given in Table 1 for α2 and β2 yields µ2 = µ + 2µ c +

.64µ c2, µ2 = µ + 2µ c + 3.53µ c2, µ2 = µ + 2µ c + 3.20µ c2
or d/R = 0+, 0.05, 0.20, respectively. As expected on physical
rounds, the correction of O(c2) decreases with increasing mini-
um inter-2-sphere distance. Third, the softer behavior afforded
y larger minimum inter-2-sphere distances is akin to that found
 c

5

in suspensions of polydisperse n-spheres [19,20,37]. As a refer-
ence result to aid in gauging this softening, the Hashin–Shtrikman
(HS) lower bound (23) is included in Fig. 3.

.2. Suspensions with polydisperse n-spheres

It is also instructive to compare the result (10) for isotropic
uspensions of monodisperse n-spheres with two results for
sotropic suspensions of n-spheres with infinitely many sizes that
re widely utilized in the literature. Those are the DS result (14)
lready referenced above and the result originally introduced
y Christensen and Lo [38], and later derived by alternative
eans and shown to be realizable by Avellaneda [36], for the so-
alled differential coated n-sphere (DCS) assemblage. For 3- and
-spheres, the latter reads

µDCS3 = µ +
35c

7 − 15c + 8c10/3 +
√
q3

µ (20)

with

q3 = 49+14c−1175c2+2352c8/3−1288c10/3−16c13/3+64c20/3

and

µDCS2 = µ +
4c

1 − 2c + c4 +
√
q2

µ (21)

ith

2 = 1 − 12c2 + 24c3 − 14c4 + c8,

espectively.
In the limit as the volume fraction c ↘ 0, the effective shear

oduli (14) and (20)–(21) reduce asymptotically to

µDS3 = µ +
5
2
µ c + 4.38µ c2 + O(c3)

µDS2 = µ + 2µ c + 3.00µ c2 + O(c3)

nd

µDCS3 = µ +
5
2
µ c + 2.50µ c2 + O(c3)

µDCS2 = µ + 2µ c + 2.00µ c2 + O(c3)

. (22)

s expected on physical grounds, the coefficients of O(c2) in both
of these results are smaller than the ones in (12) and (13) and,
by the same token, in (5) and (6). The quantitative difference
is particularly significant for the DCS result (20)–(21), which
happens to coincide identically up to and including O(c2) with
the Hashin–Shtrikman (HS) lower bound [39,40]

µHSn =
2 + nc
2(1 − c)

µ = µ +

(
1 +

n
2

)
µ

∞∑
r=1

cr . (23)

Another significant difference is that the effective moduli (14)
nd (20)–(21) only percolate at c = 1, rather than percolating at
= pn. This is because these results correspond, again, to sus-
ensions wherein the n-spheres are of infinitely many different
izes and spatially distributed in ways in which they can occupy
he entire volume of the suspension at hand.

Having pointed to the differences in the dilute and percolation
imits, we now turn to comparing the result (10) with (14) and
20)–(21) for volume fractions of n-spheres in the entire range
∈ [0, 1]. Fig. 4 presents such a comparison for the case of 3-

pheres, while Fig. 5 presents the corresponding comparison for
-spheres. For better visualization of the quantitative differences,
arts (b) show the results in the entire range of volume fractions
∈ [0, 1], while parts (a) zoom in the range c ∈ [0, 0.4].
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Fig. 4. Comparison of the effective shear modulus (10) for random isotropic
suspensions of monodisperse rigid 3-spheres with the corresponding classical
differential-scheme (DS) result (14) and the differential-coated-sphere (DCS)
result (20) for suspensions with 3-spheres of infinitely many sizes. The results
are shown normalized by the shear modulus of the matrix µ as a function of the
volume fraction c of 3-spheres. Part (a) zooms in the small-to-moderate range
of c , while part (b) shows the entire range of volume fractions. For further com-
parison, the Krieger–Dougherty (KD) formula (15) and the Hashin–Shtrikman
(HS) bound (23) are also included in the figures.

The DS result (14) remains within 10% of the formula (10),
bounding it from below, up to a volume fraction of around c =

0.38 for the case of 3-spheres and of c = 0.33 for 2-spheres,
indicating that the size polydispersity of the n-spheres does not
have a significant effect on the elastic response of the suspensions
for small and moderate c . For larger volume fractions, consistent
with its larger percolation threshold at c = 1, the DS result is
increasingly softer.

The behavior of the DCS result (20)–(21) is more complex.
Despite its much softer asymptotic behavior (22) and larger per-
colation threshold at c = 1, it remains within 10% of the formula
(10) up to a volume fraction of around c = 0.55 for the case of
3-spheres and of c = 0.53 for 2-spheres. It does so by intersecting
with (10) twice, for 3-spheres, first at around c = 0.41 and then
at around c = 0.51, while for 2-spheres the intersections occur
at around c = 0.46 and c = 0.86.
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Fig. 5. Comparison of the effective shear modulus (10) for random isotropic
suspensions of monodisperse rigid 2-spheres with the corresponding classical
differential-scheme (DS) result (14) and the differential-coated-sphere (DCS)
result (21) for suspensions with 2-spheres of infinitely many sizes. The results
are shown normalized by the shear modulus of the matrix µ as a function of
the volume fraction c of 2-spheres. Part (a) zooms in the small-to-moderate
range of c , while part (b) shows the entire range of volume fractions. For
further comparison, the Hashin–Shtrikman (HS) bound (23) is also included in
the figures.

4.3. Use in comparison-medium methods

Since the pioneering work of Talbot and Willis [41], linear [42–
46] and nonlinear [19,24,37,47–49] comparison-medium meth-
ods have repeatedly proven extremely powerful to construct
approximations for the homogenized response of the nonlinear
mechanical and physical properties of composite materials from
corresponding homogenization solutions for linear properties.
The result (10) proposed here provides a new such homoge-
nization solution of ample practical relevance for use in these
methods.
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