Journal of Elasticity (2022) 151:177-186
https://doi.org/10.1007/s10659-022-09907-2

™

Check for
updates

The Curious Case of 2D Isotropic Incompressible
Neo-Hookean Composites

Victor Lefévre' - Gilles A. Francfort?3 . Oscar Lopez-Pamies*>

Received: 3 January 2022 / Accepted: 9 June 2022 / Published online: 20 July 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract

The homogenized behavior of a hyperelastic composite material is characterized by an effec-
tive stored-energy function that is functionally very different from the stored-energy func-
tions that describe the underlying hyperelastic constituents. Over the past two decades, sev-
eral analytical and computational results suggest that the case of isotropic incompressible
Neo-Hookean composites in 2D may be the exception. This Note conjectures that the ho-
mogenized behavior of an isotropic hyperelastic solid made of incompressible Neo-Hookean
materials is itself an incompressible Neo-Hookean material. To support this conjecture, ear-
lier results are summarized, a new Reuss lower bound is derived, and a set of computational
results is presented for the physically relevant cases of a Neo-Hookean matrix filled with
random isotropic distributions of rigid and liquid circular particles of identical size.
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Mathematics Subject Classification 74B20 - 74Q05 - 74Q20 - 74S05 - 76T20

1 Introduction

While the study of the effective or homogenized linear behavior of composites materials has
a long and rich history, that of their nonlinear behavior is much more sparse. In the case of
hyperelastic composites, the non-convexity of the stored-energy function is a major hurdle.
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Define

W(F) = inf { inf WX, Vy)dX}, (1)

keNV | yekYor Sy,

where Yo = (0, DV, kY ={y:y=FX+u, ue Wol"p(kYo; RM)} stands for the set of
admissible deformation fields y(X) with average gradient kaO Vy dX = F and kY,-periodic
fluctuations u. That formula has been shown by Braides [1] and Miiller [2] (see also [3]) to
represent the effective stored-energy function of hyperelastic composite materials with Y;-
periodic microstructure, provided that the local stored-energy function W (X, F) satisfies,
for arbitrary F,

alFI” = WX, F) < B(1 +|F|) (@)

for some o > 0, B8, 1 < p < 0.

Conditions (2) rule out all incompressible stored-energy functions and many of the pop-
ular compressible ones, including any compressible Neo-Hookean material. It is however
expected that the formula (1) should apply to all physically sound stored-energy functions.
Fully embracing this expectation, we take (1) as the definition for the effective stored-energy
function of periodic hyperelastic composites. For the limiting case of incompressible be-
havior, which is the focus of this work, we include the pointwise incompressibility of the
material as a constraint in the admissible set of deformation fields and write

o inf { inf WX, Vy)dX{ ifdetF=1
W(F) = keNV | yeky{ie Jxy,

, 3)
+00 else
where
kY[ ={y:detVy=1 ae., y=FX+u, ue W, " (k¥y; R")}.

Now, for a given local stored energy function W (X, F), the resulting effective stored-
energy function W (F) is, in general, functionally very different! from W (X, F). We conjec-
ture that a rare exception to this rule is the case of isotropic incompressible Neo-Hookean
composites in 2D. Precisely, we conjecture that for the case of isotropic composites with
local stored-energy function

X g F -2 if detF=1
WX F=1 2 “

+00 else

in N = 2 space dimensions, the effective stored-energy function (3) is Neo-Hookean and
that it is given by

[F.F—z] if detF =1
W(F) = , (5)
+00 else

IThis is so even in the most specialized case of isotropic incompressible composite materials made of
isotropic incompressible constituents, when the resulting effective stored-energy function W (F), much like
the local stored-energy function W (X, F), admits representations in terms of just N — 1 invariants.
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where the effective material parameter 1 is the effective shear modulus of the corresponding
isotropic incompressible linear elastic composite material. In other words,

n= ][ wX) (1 +en(x)X)) dX, (6)
Yy
where x (X) is the Yy-periodic function that minimizes
/ wXepr(Xoe + X1€2 + ) - e (X0 + X 1€ + ) dX
Yy

on {¢ € W'?(Yy; R?) : ¢ Yp-periodic and Div ¢ = 0}.

Summary of Earlier Results In the sequel, we provide evidence in support of the above con-
jecture. In doing so we follow in the footstep of prior studies. In [4] a formula for the effec-
tive stored-energy function of a two-phase particulate hyperelastic composite that includes
isotropic Neo-Hookean composites in 2D as a special case is derived, yielding an effective
stored-energy function of the form (5) with

— __ —HS __ (1 - C)Mm“" (1 + C),up
p=u"" = Hans
A+ ptn+ (1= g

@)

where wn and uy stand for the respective shear moduli of the matrix and of the particles
and c is the concentration (area fraction) of particles. Remark that the effective material
parameter 7775 in (7) agrees with one of the Hashin-Shtrikman (HS) bounds — the lower
bound if jtp > 1w, the upper bound otherwise — for the effective shear modulus of two-
phase linear elastic composites made of isotropic incompressible constituents. The same
result (7) was derived earlier in [5] via a more direct approach.

In [6] a formula for the effective stored-energy function of a Neo-Hookean matrix filled
with a random isotropic distribution of rigid particles in 2D is obtained. The result is again
of the Neo-Hookean form (5). There,

p=n" = ®)

where, as above, u, stands for the shear modulus of the underlying Neo-Hookean matrix.
Interestingly, 7”5 in (8) agrees with the classical result generated by the so-called differ-
ential scheme for the effective shear modulus of a linear elastic isotropic incompressible
material filled with a random distribution of circular rigid particles of infinitely many sizes.

In a more computational direction, finite-element (FE) solutions for the effective stored-
energy function of two-phase Neo-Hookean composites made of the periodic repetition of
a square unit cell ¥y = (0, 1) containing 60 randomly distributed circular almost-rigid par-
ticles of identical (monodisperse) size were generated in [7] under the assumption that the
minimizers in (1) are Yy-periodic. While such microstructures are not exactly isotropic, the
relatively large number of particles (more on this below) led to fairly isotropic responses, at
least for the composites with small-to-moderate particle concentration (¢ < 0.3). The com-
prehensive bifurcation studies in [8] later established that the assumption that the minimizers
for the type of Neo-Hookean composites studied in [7] are Yj-periodic is indeed justified.
Furthermore [6] showed that the FE solutions put forth in [7] were, by and large, of Neo-
Hookean form.
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More recently, FE solutions for the effective stored-energy function (3) of a variety
of two-phase particulate Neo-Hookean composites with either rigid (u, = +00) or liquid
(pp = 0+) particles have been obtained in [9]. The resulting effective stored-energy func-
tions appear to be Neo-Hookean as well.

The organization of the rest of this Note is as follows. In Sect. 2, we recall the classical
Voigt upper and Reuss lower bounds and derive a new Reuss bound for the effective stored-
energy function (3) when specialized to isotropic incompressible Neo-Hookean composites
with local stored-energy function (4). Both the Voigt and new Reuss bounds are shown to
be consistent with the conjecture (5). In Sect. 3, we present a comprehensive set of numer-
ical solutions for (3) for the physically relevant cases of a Neo-Hookean matrix filled with
random isotropic distributions of rigid — infinite shear stiffness — and liquid — incom-
pressible with vanishingly small shear stiffness — circular particles of monodisperse size.
The results span a large range of concentrations of particles, ¢ € [0, 0.60]. All of them seem
to reinforce the conjecture (5).

From now onward, we tacitly assume that detF =1 and that N = 2.

2 Voigt and Reuss Bounds

The Classical Voigt Bound The Voigt upper bound is trivial. It suffices to consider as admis-
sible trial field in (3) the field y(X) = FX. This yields

—v
W(F)g’%[ii—z] with & ::][ w(X) dX. ©)
Yo

The Classical Reuss Bound Establishing Reuss lower bounds usually requires a dual for-
mulation of the minimization problem (3). But the lack of convexity stands in the way of
that approach. This difficulty can be circumvented by using appropriate types of Legendre
transforms [10]. Using the standard Legendre transform

* . .F — — —1 .
w*(X,S) = st;p {S-F-WX,F)} = Z;L(X)S S+ nX),

we get

&[F-F—zps.F—Ls.S—M(X)
2 - 2u(X)

for arbitrary S. Substitution in the homogenization formula (3) leads to

— 1
W(F) > inf { inf S F———S-S—uX) ) dX;.
( )—kli‘Nz{yé?m ]£y< x> ST )> }

Since this inequality is valid for arbitrary S, we can choose it to be a constant, say S = S.
For this choice, the inequality simplifies to

— — — 1 1 — _
WFE)>S-F— - ——dX )S-S - X) dX,
P51 (] g5 fo
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where we have made use of the fact that kaO Vy(X)dX = F and of the Y,-periodicity of
w(X). Optimizing this result with respect to S finally leads to the classical Reuss bound

-1
FF-1¥ with  @f:= <][ LdX) (10)
¥y H(X)

for Neo-Hookean composites, where " is given by (9),.

Given that ¥ > %, the Reuss bound (10) violates the trivial bound W (F) > 0 for small
deformations (F — I). Further, the Reuss bound (10) is unbounded from below for the lim-
iting case when one of the phases is rigid, for 7z = +oo0 then. In the opposite extreme case
when one of the phases is a liquid, the Reuss bound (10) becomes —zz" since i% = 0.

—R
— — "
W(EF) > —
)=z 2

The New Reuss Bound To improve on (10), we consider a different transformation inspired
by, e.g., [11]. Precisely, we introduce

X
v (X, S, p)=sup{S~F+pdetF—¥F-F} (11)
F
Fi
and remark that, upon writing F as a 4-vector, i.e., F = ?2 , U*(X, S, p) reads as
12
Fy
v*(X,S, p)=sup{S-F+F - MF} with
F
—u(X)/2 p/2 0 0
mo| 2 20 0
' 0 0 -uX)/2  —p/2
0 0 -p/2  —uX)/2
Note that the eigenvalues m;,i =1, ...,4 of M are all non positive iff p2 < w*(X).
X
Now, take p = u(X), then F- MF = —% [(Fll — F22)2 + (Fip + Fz])z], SO
R X)
*(X, S, u(X)) =sup {S -F— MT [(F11 — F)* 4 (Fio + le)z]}
F
+00 if S;1+ S #0o0r S — 81 #0

1
81 X) [(S11 = $22)> + (Si2 + $21)°]  else

X
Consequently, since, from (11), ? [F-F-2]>S-F+uX)detF—v*(X, S, u(X)) —

1 (X), substituting in the homogenization formula (3), choosing S = (g _’3 a) with arbi-

trary constants  and 8, and exploiting the facts that detF = 1, kaO Vy(X)dX =F, and that
w(X) is Yy-periodic leads to

W = = - 1
W(F)Zsup{]{’o (“(Fll —Fn)+B(Fn+ Fa) — )

@+ 52)> dX}
a.p
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:E[F.F_z], (12)

which is precisely the new Reuss bound.

Note that, like its upper counterpart (9), the new Reuss bound (12) is of Neo-Hookean
form and its effective material parameter i® agrees identically with the classical Reuss
bound for the effective shear modulus of linear elastic composites made of isotropic incom-
pressible constituents.

Remark 1 A corollary that immediately follows from the Voigt upper bound (9) and the
Reuss lower bound (12) is that the effective stored-energy function for Neo-Hookean com-
posites with local shear modulus u(X) = po + t w(X), |lw(X)| < C, is identically Neo-
Hookean and asymptotically given by

W(F)=%<uo+t][ w(X)dX)[F-F—2]+0(t2) (13)
Yo

in the limit of small heterogeneity contrast as t — 0. This is so because t% =" + 0 (1?).

3 Computational Results for a Neo-Hookean Matrix Filled with Circular
Rigid and Liquid Particles

In this section, which complements the small-contrast result (13), we present computational
results for the effective stored-energy function (3) for two physically relevant classes of
isotropic Neo-Hookean composites with infinite heterogeneity contrast, those of a Neo-
Hookean matrix filled with either rigid or liquid circular particles of monodisperse size.

3.1 Construction of the Microstructures

‘We begin by outlining the process by which we constructed and pre-selected the microstruc-
tures and then describe the numerical method of solution and the final filtering procedure
used to identify the microstructures that lead to elastic behaviors that are indeed isotropic to
a sufficiently high degree of accuracy.

In the spirit of [12-14], the type of isotropic particulate composite materials considered
in this section is approximated as an infinite medium made of the periodic repetition of a unit
cell containing a random distribution of a sufficiently large but finite number N of particles.
A critical issue in such an approach is the determination of that sufficiently large number
N. Equally critical is the choice of an appropriate numerical scheme that will handle large
deformations, the incompressibility constraint, and the large deformation gradients that arise
between closely packed particles.

So as to be able to cover a large range of particle concentrations, we made use of the
algorithm introduced by Lubachevsky and Stillinger [15]. Although this algorithm allows to
generate microstructures spanning the full range of concentrations — from the dilute limit
¢ \{ 0 to the percolation threshold ¢ ' ¢, =~ 0.90 [15] — we did not wish to deal with
the computational challenges of extremely packed microstructures here and restricted our
attention to the range ¢ € [0, 0.60]. Moreover, we imposed the minimal distance between
any pair of particles to be greater than 1% of their radius.

We begun by generating a total of 4000 realizations of square unit cells Y, =
(—1/2,1 /2)2 containing 30, 60, 120, 240, 480, 960 randomly distributed particles. For
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Fig. 1 Representative unit cell ¥y containing a random distribution of N = 480 monodisperse circular parti-
cles at concentration ¢ = 0.50 and the contour plot of its two-point correlation function P, (X) near the origin
X =0 as a function of the coordinates X| and X» normalized by the diameter 2a of the particles

each realization, we computed the two-point correlation function P, (X) = fYo 0(XHo(X +
X’)dX’, where 6(X') stands for the characteristic function of the particles, that is, (X) = 1
if X lies within a particle and zero otherwise. As a first assessment of deviation from
exact geometric isotropy (which is only achieved in the limit of infinitely many parti-
cles), we then computed the deviation of P,(X) from its isotropic projection I,(|X]) =
1/2m) f02" P,(|X|cospe; + |X|singe;)d¢ onto the space of functions that depend on X
only through its magnitude |X| ({e;, e,} stand for the principal axes of the square unit cell
Y)). Realizations that did not satisfy the condition

[1P,X) — LAXDII

<2x 1072 (14)
[1L2(IXDIh

were discarded as not sufficiently isotropic. This filtering process reduced the initial set of
4000 realizations to just a set of 80 potentially acceptable realizations, 10 for each of the 8
concentrations

¢=0.01,0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60

that we chose as a discretization of the range ¢ € [0, 0.60]. By way of an example, Fig. 1
shows a representative unit cell ¥, containing a total of N = 480 particles at concentration
¢ = 0.50 that satisfied the condition (14) alongside a contour plot of its two-point correlation
function.

Remark 2 The criterion (14) provides a computationally inexpensive tool to weed out mi-
crostructures that cannot lead to isotropic elastic behaviors. However, microstructures that
do satisfy (14) need not exhibit isotropic elastic behaviors. As described further below, a
thorough direct check of its constitutive behavior is required to establish whether a Neo-
Hookean composite with a finite number N of particles does indeed exhibit isotropic elastic
behavior to within the desired tolerance.
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We then computed the effective stored-energy function of the particulate Neo-Hookean
composites with the above-outlined 80 potentially acceptable microstructures. Specifically,
we used the discretized parametrization®

E,()\) =Acospe ®e —Asinpe Qe +27! singpe, ® e + 27! cospe, R e (15)

in terms of the two parameters A € R and ¢ € {0, 7/8, 7w /4,3n/8, w/2} for the applied av-
erage deformation gradient F. Physically, this corresponds to pure shear deformations with
stretches A and A ™! at an angle ¢ with respect to the principal axes {e;, e,} of the unit cell Y;.
For the spatial discretization, we employed the open-source mesh generator code Gmsh [16]
to discretize the unit cells with non-overlapping 6-node triangular elements. Because of the
incompressibility of the matrix material and that of the rigid and liquid particles, we made
use of a hybrid re-formulation of the variational problem (3) in which both the displacement
field y and a pressure field p are the independent fields in the problem (see, e.g., Sect. 5
in [17]). Furthermore, the constitutive behavior of the rigid particles was described as a set
of kinematic constraints over their boundaries and so their interior did not require mesh-
ing [18]. The constitutive behavior of the liquid particles was described by a Neo-Hookean
stored-energy function with a shear modulus that was two orders of magnitude softer than
that of the matrix, namely, u, = prn/100. Within the hybrid re-formulation, we made use of
triangular elements featuring approximations that are quadratic in the deformation field and
linear in the pressure field. In agreement with the bifurcation analysis in [8], all generated
FE solutions were Yj-periodic.

With the FE solutions at hand, the final step was to identify which of the pre-selected 80
microstructures did indeed exhibit elastic responses that were isotropic to a sufficiently high
degree of accuracy. To that end, we checked whether the inequality

max [W(E, (A))] — mgn [W(E; ()\))]

<1072 (16)

min [WE, 6}

was satisfied. Out of the 10 pre-selected microstructures for each of the 8 concentrations
¢ =0.01,0.05,0.10, 0.20, 0.30, 0.40, 0.50, 0.60, only a few satisfied (16) for each c. As
we show next, the effective stored-energy functions for the Neo-Hookean composites with
those microstructures appear to be of Neo-Hookean form.

3.2 Results

Figure 2(a) presents plots of the FE results (solid circles/dashed lines) for the effec-
tive stored-energy functions (3) of the Neo-Hookean composites with concentrations ¢ =
0.10,0.30, and 0.50 of circular rigid particles. The results are normalized by the initial
shear modulus p,, of the underlying Neo-Hookean matrix as a function of the deformation
measure 1, = F-F=)2+4+212

For direct comparison, Fig. 2(a) includes the results (solid lines) given by the conjecture
(5). Figure 2(b) presents plots of the effective shear modulus 7 in that formula, as defined

2Thanks to its objectivity W (QF) = W(F) ¥Q € Ortht and incompressibility W (F) = +oo0 if detF # 1,
the effective stored-energy function (3) admits representations in terms of two scalar variables, this regardless
of its anisotropy. In this work, we found it convenient to use the representation ¥ (A, ¢) := W (F(, (1)), where

Fis given by (15) with A € R and ¢ € [0, 7/2]. In our calculations, we discretized the latter range as ¢ €
{0, 7/8, /4,37 /8, w/2}.
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Fig. 2 (a) FE results for the effective stored-energy function (3) for Neo-Hookean composites made of a
Neo-Hookean matrix filled with circular rigid (up = +00) particles at several concentrations c¢ as functions
of the deformation measure 71 = F - F. (b) The corresponding effective shear modulus (6) in the conjectured
formula (5), which is also plotted in part (a) for direct comparison with the FE results, as a function of ¢

0.1 : ‘ !
FE
Formula (5)

0.08 - 0.8 - B
0,06 0.6 f 1
W I
I L,

" 0.04 o oall ]

0.02 02 L 4

0 0 \ \ \ \ \
2205 21 215 22 225 0 01 02 03 04 05 06
11 C
(a) (b)

Fig.3 (a) FE results for the effective stored-energy function (3) for Neo-Hookean composites made of a Neo-
Hookean matrix filled with circular liquid (ip = um/100) particles at several concentrations ¢ as functions

of the deformation measure 7 = F - F. (b) The corresponding effective shear modulus (6) in the conjectured
formula (5), which is also plotted in part (a) for direct comparison with the FE results, as a function of ¢

by (6) and computed by FE. In particular, the results for iz are shown normalized by the
initial shear modulus w, of the underlying Neo-Hookean matrix as a function of the con-
centration of particles ¢ for the values ¢ = 0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60 that
we examined.

It is evident from Fig. 2 that the effective stored-energy functions for Neo-Hookean com-
posites made of a Neo-Hookean matrix filled with circular rigid particles seem to be pre-
cisely of Neo-Hookean form and, in particular, given by (5).

While the maximum applied deformations, measured by 7, are not exceedingly large in
the results presented in Fig. 2(a), we emphasize that the local stretches in the underlying
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186 V. Lefévre et al.

Neo-Hookean matrix are large. Because the particles are rigid and thus do not deform, the
matrix must deform more than the applied average deformation. In other words, the FE
results in Fig. 2(a) fully probe the nonlinear elasticity of the underlying Neo-Hookean matrix
despite the deceivingly moderate values of 7.

Figure 3 shows results for liquid particles that are entirely analogous to those in Fig. 2.
The main observation remains the same as that for Fig. 2.
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