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The effective shear modulus of a random isotropic
suspension of monodisperse liquid n-spheres:
from the dilute limit to the percolation threshold†

Kamalendu Ghosh,a Victor Lefèvreb and Oscar Lopez-Pamies *a

A numerical and analytical study is made of the macroscopic or homogenized mechanical response of a

random isotropic suspension of liquid n-spherical inclusions (n = 2, 3), each having identical initial radius

A, in an elastomer subjected to small quasistatic deformations. Attention is restricted to the basic case

when the elastomer is an isotropic incompressible linear elastic solid, the liquid making up the inclusions

is an incompressible linear elastic fluid, and the interfaces separating the solid elastomer from the liquid

inclusions feature a constant initial surface tension g. For such a class of suspensions, it has been

recently established that the homogenized mechanical response is that of a standard linear elastic solid

and hence, for the specific type of isotropic incompressible suspension of interest here, one that can be

characterized solely by an effective shear modulus mn in terms of the shear modulus m of the elastomer,

the initial elasto-capillary number eCa = g/2mA, the volume fraction c of inclusions, and the space

dimension n. This paper presents numerical solutions—generated by means of a recently introduced

finite-element scheme—for mn over a wide range of elasto-capillary numbers eCa and volume fractions

of inclusions c. Complementary to these, a formula is also introduced for mn that is in quantitative

agreement with all the numerical solutions, as well as with the asymptotic results for mn in the limit of

dilute volume fraction of inclusions ðc& 0Þ and at percolation ðc% pnÞ. The proposed formula has the

added theoretical merit of being an iterated-homogenization solution.

1 Introduction

Elastomers filled with liquid inclusions—contrary to conventional
solid fillers—have emerged over the past few years as a new class
of materials with unique macroscopic mechanical and physical
properties.1–5 From a qualitative point of view, the reasons for
these unique properties are well settled. On one hand, as opposed
to conventional solid fillers, the addition of liquid inclusions to
elastomers increases the overall deformability and, on the other
hand, the behavior of the interfaces separating a solid elastomer
from embedded liquid inclusions, while negligible when the
inclusions are ‘‘large’’, may dominate the macroscopic properties
of the material when the inclusions are sufficiently ‘‘small’’. From
a quantitative point of view, by contrast, the understanding of the
fascinating properties of elastomers filled with liquid inclusions is
yet to be fully developed.

In this context, Ghosh and Lopez-Pamies6 and Ghosh,
Lefèvre, and Lopez-Pamies7 have recently worked out several
theoretical results aimed at explaining and describing the
mechanics of deformation of elastomers embedding liquid
inclusions. They include the governing equations that describe
the macroscopic or homogenized mechanical response of
elastomers filled with liquid inclusions under finite quasistatic
deformations, this for the fundamental non-dissipative case
when:
� The elastomer is a hyperelastic solid,
� The liquid making up the inclusions is a hyperelastic fluid,
� The interfaces separating the solid elastomer from the

liquid inclusions feature their own hyperelastic behavior,
which includes the presence of an initial surface tension as a
special case, and
� The inclusions are initially n-spherical‡ (n = 2, 3) in shape.
The equations show that the resulting macroscopic behavior

of such filled elastomers is that of a hyperelastic solid—
distinctly, one that depends directly on the size of the inclusions
and the constitutive behavior of the interfaces—and hence that
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it is characterized by an effective stored-energy function W(F) of
the macroscopic deformation gradient F. What is more, the
equations show that the effective stored-energy function W(F)
reduces asymptotically to the quadratic form

WðFÞ ¼ 1

2
H � LHþO H

�� ��3� �
(1)

in the limit of small deformations as H := F � I - 0, where the
initial effective modulus of elasticity

L: ¼ @2W

@F@F
ðIÞ (2)

possesses the standard major and minor symmetries,

Lijkl = Lklij and Lijkl = Ljikl = Lijlk, (3)

of a conventional linear elastic solid.
The result (1) is striking on two counts. First, the asymptotic

behavior (1) implies that the macroscopic first Piola–Kirchhoff
stress tensor specializes to

S ¼ @W
@F
ðFÞ ¼ LHþOðjjHjj2Þ (4)

in the limit of small deformations as H - 0 and hence that
elastomers filled with liquid inclusions are free of macroscopic
residual stresses (since S = 0 in the absence of deformation
when H = 0), this in spite of the fact that there are local residual
stresses within the underlying liquid inclusions due to the
presence of initial interface stresses. Second, precisely because
of the presence of local residual stresses within the liquid
inclusions and of initial interface stresses, the local moduli of
elasticity in the bulk and on the interfaces do not posses the
standard minor symmetries of conventional elastic moduli.
Yet, the resulting effective modulus of elasticity (2) turns out
to possess the standard minor symmetries (3)2. While the
absence of a macroscopic residual stress in (4) is a direct
consequence of the average of the local residual stresses within
the inclusions canceling out the average of the initial interface
stresses, the minor symmetries (3)2 can be traced back to the
effective stored-energy function (1) satisfying macroscopic
material frame indifference.6

Granted the above general homogenization result, the object
of this paper is to work out the solution for the effective

modulus of elasticity L for an isotropic incompressible elasto-
mer filled with a random isotropic distribution of incompres-
sible liquid n-spherical inclusions, each having identical
(monodisperse) initial size, wherein the elastomer/liquid inter-
faces feature a constant initial surface tension. This, arguably,
is the most basic type of elastomer filled with liquid inclusions.
Clearly, by virtue of the symmetries (3), the effective modulus of
elasticity for this type of isotropic incompressible filled elasto-
mer is of the form

L ¼ 2mnK þ1 J;

Kijkl ¼
1

2
dikdjl þ dildjk
� �

� 1

n
dijdkl

Jijkl ¼
1

n
dijdkl

8>><>>: ; (5)

where K and J are the classical deviatoric and volumetric
orthogonal projection tensors§ and where mn stands for the
effective shear modulus. The problem thus amounts to deter-
mining the effective shear modulus mn in (5) directly in terms of
the elasticity of the elastomer, the surface tension on the
elastomer/liquid interfaces, and the size and amount of liquid
inclusions.

We begin in Section 2 by formulating the homogenization
problem that defines the pertinent effective modulus of elasti-
city (5). In Section 3, we discuss the asymptotic solutions for the
effective shear modulus mn in (5) in the limit of dilute volume
fraction of inclusions and at percolation. The former is analy-
tically tractable by means of plane/spherical harmonics. The
latter, on the other hand, is analytically tractable only in part.
In Section 4, we present numerical solutions—generated by
means of a recently introduced finite-element scheme—for mn

over a wide range of volume fractions of inclusions between the
dilute limit and percolation. Complementary to these numerical
solutions, we then propose in Section 5 an explicit formula for
mn. By construction, in direct analogy with a new result for
suspensions of monodisperse rigid n-spheres,9 the proposed
formula is in quantitative agreement with all the asymptotic and
numerical solutions presented in Sections 3 and 4 and, in
addition, it has the theoretical merit of being an iterated-
homogenization solution that is realizable by a certain class of
random isotropic suspension of liquid n-spherical inclusions
with infinitely many sizes. We devote Section 6 to describing the
details of its realizability. We conclude in Section 7 by recording
a few final comments.

At the close of this introduction, it is fitting to mention that
several recent works,10–13 motivated by the experiments of Style
et al.,2 have heuristically extended classical homogenization
results in linear elasticity14–16 to estimate an effective shear
modulus m3 (and an effective bulk modulus k3) for isotropic
elastomers filled with isotropic distributions of incompressible
liquid 3-spherical inclusions featuring a constant surface ten-
sion at the elastomer/liquid interfaces. In so doing, consciously
or not, they have assumed that the presence of residual bulk
and interface stresses and the lack of symmetry of the local
moduli of elasticity do not change the type of homogenization
limit. As summarized in the preceding paragraphs, the work
of Ghosh and Lopez-Pamies6 and Ghosh, Lefèvre, and Lopez-
Pamies7 has established that the type of homogenization limit,
rather remarkably, does indeed remain of the classical form (1)
with (3).

2 The problem
2.1 Initial configuration and kinematics

Consider a suspension comprised of a statistically uniform
distribution of n-spherical inclusions, each having identical
initial radius A, embedded in an elastomer that occupies a

§ Throughout, the components of all tensorial quantities are referred to a
Cartesian frame of reference {ei} (I = 1, . . ., n) and the summation convention
is employed.
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domain O � Rn (n = 2, 3) of length scale c, with boundary qO
and outward unit normal N, in its initial undeformed con-
figuration. Denote by G the smooth interfaces separating the
inclusions from the elastomer, by N̂ the associated outward
unit normal pointing from the inclusions towards the elasto-
mer, and identify material points in the body by their initial
position vector X A O. See Fig. 1(a) for a schematic.

In response to a nominal traction s(X) applied on the part of
the boundary @ON and a displacement u(X) applied on the
complementary part of the boundary @OD ¼ @On@ON; the
position vector X of a material point may occupy a new position
x specified by a continuous¶ invertible mapping x = y(X). In
terms of the displacement field u(X) := X � y(X), we write

x = X + u(X).

2.2 Constitutive behaviors of the bulk and the interfaces

All the inclusions are made of the same elastic fluid with first
Lamé constant—or bulk modulus (since the shear modulus of
an elastic fluid is zero)—Li 4 0 and have the same residual
hydrostatic stress riI. The elastomer, on the other hand, is an
isotropic linear elastic solid with Lamé constants m 4 0 and
L 4 0. As opposed to the inclusions, the elastomer is free
of residual stresses. Moreover, the interfaces separating the
elastomer from the inclusions exhibit a constant initial surface
tension g Z 0.

Precisely, within the setting of small quasistatic deforma-
tions, the first Piola–Kirchhoff stress tensor Se at any material
point in the bulk, X A O\G, reads6

Se(X) = rei(X)I + Le(X)rue (6)

with

LeðXÞ ¼ rei ðXÞðA �K þ ðn� 1ÞJÞ þ 2meðXÞK þ nLeðXÞJ; (7)

where Aijkl ¼ 1=2ðdikdjl � dildjkÞ and where the superscript

e : ¼A

‘

has been introduced to denote dependence on the size A of the
inclusions and their spatial location. In particular, note that the
dependence of the modulus of elasticity (7) on X is such that rei
(X) = 0, me(X) = m, Le(X) = L when X lies within the elastomer and
rei(X) = ri, m

e(X) = 0, Le(X) = Li when X lies within an inclusion.
Furthermore, the interface first Piola–Kirchhoff stress

tensor Ŝe at any material point on the interfaces, X A G,
reads6

ŜeðXÞ ¼ gÎþ L̂r̂ue with L̂ ¼ gðÂ � K̂ þ ĴÞ; (8)

where Î = I � N̂ # N̂, Âijkl ¼ dikÎ jl � 1=2 Î ikÎ jl þ Î il Î jk
� �

,

K̂ijkl ¼ 1=2 Î ikÎ jl þ Î il Î jk � Î ij Î kl
� �

, Ĵijkl ¼ 1=2Î ij Î kl and brue ¼rueÎ
stands for the interface gradient of the displacement field. That

is, in indicial notation, brue� �
ij
¼ Î kj@u

e
i

�
@Xk

2.3 Local governing equations

Absent inertia and body forces, substitution of the bulk and
interface constitutive relations (6) and (8) in the balance of
momenta yields the Lagrangian equations of equilibrium6

Div rei ðXÞIþ LeðXÞrue
� 	

¼ 0; X 2 OnG

dDiv gÎþ L̂ brueh i
� rei ðXÞIþ LeðXÞrue
� 	� 	

N̂ ¼ 0; X 2 G

LeðXÞrue½ �N ¼ sðXÞ; X 2 @ON

ueðXÞ ¼ �uðXÞ; X 2 @OD

8>>>>>>><>>>>>>>:
(9)

for the displacement field ue(X). In these equations, �½ �½ � is the
jump operator across the interfaces G based on the convention

f Xð Þ½ �½ � ¼ f ið Þ Xð Þ � f eð Þ Xð Þ, where f (i) (resp. f (e)) denotes the
limit of any given function f (X) when approaching G from

within the inclusion (resp. elastomer), while dDiv stands for
the interface divergence operator. That is, in indicial notation,

ðdDivTÞi ¼ bIkj@Tij=@Xk when applied to a second-order tensor T.
In the initial configuration, prior to the application of the

boundary conditions %s(X) and %u(X), the displacement field
ue(X) = 0 and hence the equations of equilibrium (9) reduce to

rrei ðXÞ ¼ 0; X 2 OnG

gdDivÎ� rei ðXÞN̂ ¼ 0; X 2 G

8<: ; (10)

which can be viewed as the definition of the residual hydro-
static stress riI within the inclusions required to balance out
the constant initial surface tension g on the elastomer/liquid
interfaces. Given that the inclusions are initially n-spherical,
the solution of (10) yields the constant

ri ¼ �
ðn� 1Þg

A
;

Fig. 1 (a) Schematic, in its initial undeformed configuration O, of a
suspension of liquid n-spherical inclusions of monodisperse radius A
embedded in an elastomer. (b) In the limit of separation of length scales
as e ¼ A=‘& 0, when the inclusions are much smaller than the length scale
c of the domain O occupied by the body, the suspension can be shown6,7

to behave as a homogeneous elastic solid. Specifically, within the setting of
small quasistatic deformations, its mechanical response is fully character-
ized by an effective modulus of elasticity L.

¶ We expect the interfaces between liquid inclusions and elastomers to be
coherent, thus our restriction to continuous deformation fields.
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the same for all the inclusions. Granted this last relation, it is a
simple matter to deduce that the Lagrangian equations of
equilibrium (9) reduce to

Div LeðXÞrue½ � ¼ 0; X 2 OnG

dDiv L̂brueh i
� LeðXÞrue½ �½ �N̂ ¼ 0; X 2 G

LeðXÞrue½ �N ¼ sðXÞ; X 2 @ON

ueðXÞ ¼ uðXÞ; X 2 @OD

8>>>>>>><>>>>>>>:
: (11)

2.4 Homogenization limit

In the limit of separation of length scales as e& 0, when the
inclusions are much smaller than the length scale c of the
domain O occupied by the body, the solution ue(X) of the local
equations of equilibrium (11) converges to a macroscopic
displacement field u(X) solution of the homogenized equations
of equilibrium7:

Div Lru
� 	

¼ 0; X 2 O

�Lru½ �N ¼ �sðXÞ; X 2 @ON

uðXÞ ¼ uðXÞ; X 2 @OD

8>>><>>>: : (12)

In these equations, the constant fourth-order tensor L is the
effective modulus of elasticity that describes the macroscopic
mechanical response of the suspension when subjected to
small quasistatic deformations; see Fig. 1(b) for a schematic.

2.5 A formula for L

For the case of filled elastomers with periodic microstructure,
much like for the classical case of linear elastic composite
materials without residual and interface stresses,17 the effective
modulus of elasticity L in (12) is expediently given by a formula
that only involves computations over the unit cell defining the
microstructure.

Precisely, taking the unit n-cube Y ¼ ð0; 1Þn as the unit cell
and denoting by

yðYÞ ¼
1 if Y lies within an inclusion

0 else

(

the Y-periodic characteristic function that describes the initial
spatial locations occupied by the inclusions, the formula for the
effective modulus of elasticity—written here in a form that is
valid for compressible as well as for nearly or completely
incompressible constitutive behaviors for the elastomer and
liquid inclusions—is given by6,7

�Lijkl ¼
ð
=Y LijmnðYÞ dmkdnl þ

@omkl

@Yn
ðYÞ


 �
þ dijSklðYÞ

� 

dY

þ
ð
=Y
bLijmn dmk

bInl þ @omkl

@yp
ðYÞÎ pn


 �
dY;

(13)

where LðYÞ¼ð1�yðYÞÞ2mK�yðYÞðn�1Þg=AðA�Kþðn�1ÞJÞ,
G denotes the elastomer/liquid interfaces contained in Y, the

interface modulus of elasticity L̂ is given by (8)2, and oijk(Y) and
Sij(Y) are the Y-periodic functions defined as the solution of
the unit-cell problem

@

@Yj
Lijkl Yð Þ

@okmn

@Yl
ðYÞþdijSmnðYÞ

� �
¼�@Lijmn

@Yj
Yð Þ; Y2YnG

@

@Yq
L̂ijkl

@okmn

@Yp
ðYÞÎ pl

� �
Î qj� LijklðYÞ

@okmn

@Yl
ðYÞþdijSmnðYÞ

� �� �
N̂j ¼

� @

@Yq
L̂ijkldkmÎnl
� 	

Î qjþ LijklðYÞdkmdlnþdijSmnðYÞ
� 	� 	

N̂j ; Y2G

@oimn

@Yi
ðYÞ� 1

n ð1�yðYÞÞLþyðYÞLi½ �SmnðYÞ ¼ 0; Y2YnG

ð
Y

okmnðYÞdY¼ 0

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

:

(14)

The computation of the effective modulus of elasticity L for a
given filled elastomer of interest amounts thus to solving the
unit-cell problem (14) for the functions oijk(Y) and Sij(Y) and
then carrying out the integral in (13). In general, the unit-cell
problem (14) can only be solved numerically.

Remark 1. While the unit-cell problem (14) can be solved
directly for the components of the so-called concentration
tensors oijk and Sij all at once, its linearity also allows to solve
for the individual components of oijk and Sij one at a time. To
see this, note that after multiplying (14) by a constant second-
order tensor Hmn, okmnHmn and SmnHmn are nothing more
than the displacement field uk(Y) and pressure field p(Y) in a
unit-cell problem subjected to an average strain Hmn.

2.6 The specific case on interest here

The object of this paper is to determine the effective modulus
of elasticity (13) for the basic case when the elastomer is
incompressible

L = +N,

the liquid making up the inclusions is also incompressible

Li = +N,

and the inclusions are randomly and isotropically distributed,
this for any choice of shear modulus m of the elastomer, any
choice of initial surface tension g, any choice of the initial size A
of the inclusions, and any choice of volume fraction

c:¼
ð
=YyðYÞdY

of inclusions from c = 0 to the percolation threshold c = pn,
where we recall that18–20

p2 E 0.90 and p3 E 0.64 (15)

for 2- and 3-spherical inclusions, respectively.
Remark 2. As anticipated in the Introduction, because of the

overall constitutive isotropy and incompressibility of the elas-
tomer and the liquid making up the inclusions together with
the overall geometric isotropy of the inclusions, the effective
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modulus of elasticity (13) for the filled elastomer of interest
here is of the isotropic incompressible form

L ¼ 2mnK þ1J:

Id est, the macroscopic response of the filled elastomer is fully
characterized by an effective shear modulus mn. What is more, it
follows from the definition (13) that mn is of the functional form

mn = h(eCa,c,n)m, (16)

where eCa stands for the initial elasto-capillary number

eCa: ¼ g
2mA

and h(eCa,c,n) is a function solely of its three indicated
arguments.

Remark 3. In principle, to deal with a random and isotropic
distribution of inclusions, one would have to consider unit cells
Y that contain infinitively many inclusions. In practice, as
elaborated in Section 4 below, away from percolation, it suffices
to consider unit cells that contain a sufficiently large but finite
number N of inclusions.21–23 As one approaches percolation,
however, that number N increases without bound.

3 Analytical solutions in the dilute limit
and at percolation

In general, the solution of the unit-cell problem (14) needed to
determine (13) is accessible only numerically. There are, how-
ever, two limiting cases in which (14) can be treated analytically
or quasi-analytically and hence in which the effective shear
modulus mn can be determined in closed or quasi-closed form:
(i) the limit of dilute volume fraction of inclusions when c& 0

and (ii) the percolation limit when c% pn. We discuss them
next, one at a time.

3.1 The dilute limit

In the limit of dilute volume fraction of inclusions as c& 0, it
suffices to consider a unit cell Y that contains a single inclusion
whose size relative to that of the unit cell is infinitesimally
smaller. The asymptotic problem that results from (14)—that of
a single inclusion embedded in an infinite medium—can then
be solved analytically in terms of plane/spherical harmonics.24

Making use of an Eulerian approach, Style et al.10 worked out
the solution in space dimension n = 3 and determined in turn
the corresponding effective shear modulus m3. The same
solution worked out within a Lagrangian setting can be found
in Appendix D of Ghosh and Lopez-Pamies.6 More generally, the
solution for space dimension n is given by

mn ¼ mþ ð2þ nÞðeCa� 1Þ
nþ ð2þ nÞeCa mcþOðc2Þ: (17)

In the absence of surface tension on the elastomer/
liquid interfaces, when g = 0 and hence eCa = 0, the dilute

solution (17) reduces identically to the classical Eshelby
solution14

mdil;liqn ¼ m� 1þ 2

n


 �
mcþOðc2Þ

for the effective shear modulus of a dilute suspension of
incompressible n-spherical inclusions of vanishingly small
shear stiffness embedded in an isotropic incompressible solid.
For later reference, we recall that for the more general case
when the n-spherical inclusions are not liquid but just incom-
pressible with shear modulus mi, the corresponding Eshelby
solution reads

mdiln ¼ mþ ð2þ nÞðmi � mÞ
nmþ 2mi

mcþOðc2Þ: (18)

In the presence of surface tension, when g 4 0 and hence
eCa 4 0, the dilute solution (17) is a monotonically increasing
function of the elasto-capillary number eCa such that

mn o m if eCao 1

mn ¼ m if eCa ¼ 1

mn 4 m if eCa4 1

8>>><>>>: :

In other words, the presence of inclusions goes unnoticed at
eCa = 1 in the sense that the macroscopic response is identical
to that of the elastomer without the inclusions. For eCa o 1,
the presence of inclusions leads to the softening of the macro-
scopic response relative to that of the elastomer, while it leads
to its stiffening for eCa 4 1. This behavior stems from the fact
that the presence of surface tension makes the inclusions resist
deformation thereby providing a stiffening mechanism, one
that increases with increasing elasto-capillary number eCa.
For eCa 4 1, this stiffening mechanism is stronger than the
softening provided by the lack of shear stiffness within the
inclusions. In this regard, note that the dilute solution (17)
reduces to

mn = m + mc + O(c2) (19)

in the limit as eCa - +N, when the inclusions pose the largest
resistance to deformation and remain in fact n-spherical.
Interestingly, as already noted by Taylor25 for n = 3, this last
result is different—in particular, softer—than the classical
Einstein–Eshelby solution

mdil;rign ¼ mþ 1þ n

2

� �
mcþOðc2Þ

for the effective shear modulus of a dilute suspension of rigid
n-spherical inclusions embedded in an isotropic incompressible
solid. The reason for this (factor of 1 + n/2) difference is that the
forces at a solid/liquid-inclusion interface featuring surface
tension are different from those at a solid/rigid-inclusion inter-
face, even in the limit as eCa - +N.

Remark 4. The computation of the correction of O(c2) in the
Eshelby solution for n-spherical inclusions has been extensively
studied,26–30 the case of 3-spheres more so than that of
2-spheres. The techniques developed in those studies might
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be applicable to the more general problem of interest in this
work. Whether that is the case is worth exploring in future
work. Here, for completeness, we simply recall the available
correction29 to O(c2) in (17) for n = 3 in the absence of surface
tension on the interfaces, when g = 0 and hence eCa = 0:

m3 ¼ m� 5

3
mcþ 1

2
mc2 þOðc3Þ: (20)

3.2 Percolation

It is well-known from experiments and computations18–20 on
the random packing of n-spheres that the maximum volume
fraction c of n-spherical inclusions possible in the monodis-
perse filled elastomer of interest in this work is given by the
percolation thresholds pn spelled out in (15).

In the limit as c% pn; contrary to the dilute limit discussed
above, the isotropic distribution of the inclusions dictates that
we have no option but to consider a unit cell Y that contains
infinitely many inclusions; see Remark 3 above. This makes
the asymptotic problem that results from (14) challenging.
This traverse notwithstanding, it is still possible to determine
analytical approximations for the effective shear modulus mn

as c% pn;.
Space dimension n = 2. When the volume fraction c of

n-spherical inclusions reaches the percolation threshold pn,
the inclusions come into direct contact with one another at
several points. For space dimension n = 2—but not for space
dimension n = 3—the number of points of contact (the so-called
coordination number) is dense enough that the surrounding
elastomer is fully severed into disconnected pieces. This
implies that the elasticity of the elastomer plays no role in
the governing equations at percolation; in other words, setting
m = 0 would not change the response of the suspension. In turn,
this implies that the surface tension g can be factored out of the
asymptotic problem stemming from (14) when c = p2 and, in
consequence, that the associated effective shear modulus that
results from the definition (13) is necessarily of the simple
asymptotic form

lim
c%p2

m2 ¼ z2
g
2A
; (21)

where z2 is a constant.
Now, the exact determination of the constant z2 in (21) is a

difficult endeavor because one has to deal with a unit cell Y

that contains infinitely many inclusions. Nevertheless, it is
possible to determine it approximately.

Princen31 estimated that the effective shear modulus of a
hexagonal—rather than random isotropic—distribution of
monodisperse liquid 2-spherical inclusions at percolation,

when c ¼ p=2
ffiffiffi
3
p
� 0:9069, is given by

mHex;perc
2 � 0:99

g
2A
: (22)

It later emerged that the elastic response of a random isotropic
suspension of 2-spheres at percolation is likely the same as that
of a hexagonal suspension.19,20 This is because both of these
microstructures lead to a macroscopic elastic response that is

isotropic, they have practically identical percolation thresholds,
and, moreover, random isotropic suspensions contain cluster-
ings of hexagonally packed inclusions. Motivated by these
findings, as elaborated in Appendix A, we have determined
numerically the effective shear modulus mHex

2 of a hexagonal
suspension of monodisperse liquid 2-spherical inclusions up to
a volume fraction c = 0.9050.8 By extrapolating the computed

results to the percolation threshold c ¼ p=2
ffiffiffi
3
p
� 0:9069, we

have then established that

mHex;perc
2 � 0:97

g
2A
; (23)

which is not far from the estimate obtained by Princen.31

Assuming that the response of a random isotropic suspension
of monodisperse liquid 2-spherical inclusions at percolation is
indeed essentially the same as that of the corresponding
hexagonal suspension, for definiteness, we take

z2 = 1 (24)

as the constant in the percolation limit (21) for space dimen-
sion n = 2.

Space dimension n = 3. For space dimension n = 3, contrary
to n = 2, the number of points at which the inclusions come
into contact at percolation when c = p3 are not dense enough to
severe the surrounding elastomer into disconnected pieces.
In other words, the surrounding elastomer remains as a single
piece of material, albeit one with communicating holes.
Accordingly, the elasticity of the elastomer and not only the
stiffness due to surface tension contribute to the effective shear
modulus m3 of the suspension at percolation. In view of the
general functional form (16), we have, in particular,

lim
c%p3

m3 ¼ Z3ðeCaÞm; (25)

where Z3(eCa) is a function solely of the elasto-capillary number.
For eCa c 1, when the elasticity of the elastomer is

negligible relative to the stiffness due to surface tension, it
follows from (13) and (14) that

Z3(eCa) = z3eCa,

where z3 is a constant. For arbitrary values of the elasto-
capillary number eCa, however, the determination of the func-
tional form of Z3(eCa) is difficult, again, because one has to
deal with a unit cell Y that contains infinitely many inclusions.
To gain insight, as elaborated in Appendix B, we have deter-
mined numerically the two effective (axisymmetric and simple)

shear moduli, mBCCa
3 and mBCCs

3 ; of a body-centered cubic (BCC)
suspension** of monodisperse liquid 3-spherical inclusions up
to a volume fraction c = 0.675, which is very close to their

8 Reaching such high values very near percolation is numerically challenging but
doable because the pertinent unit cell contains a small number of inclusions, in
our case, only two inclusions.
** For space dimension n = 3, in contrast to n = 2, there is no simple periodic
suspension of monodisperse 3-spheres that leads to a macroscopic elastic
response that is isotropic. As elaborated below, a BCC suspension can be thought
of as the ‘‘next best thing’’.
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percolation threshold c ¼
ffiffiffi
3
p

p=8 � 0:6802. By extrapolating the

computed results to the percolation threshold c ¼
ffiffiffi
3
p

p=8 �
0:6802, we have then established that

mBCCa;perc
3 � 18

1þ 0:00174eCa9

þ
1:69 104þ eCa� 18

1þ 0:00174eCa9


 �
eCa

0:79þ eCa

(26)

and

mBCCs ;perc
3 � 16

1þ 0:00019eCa9

þ
0:48 405þ eCa� 16

1þ 0:00019eCa9


 �
eCa

0:95þ eCa
:

(27)

Now, while the macroscopic response of a BCC suspension is cubic
and not isotropic, the results in Appendix B show that the extent of
anisotropy for the case of liquid inclusions of interest here, as

measured by the difference mBCCa
3 � mBCCs

3 , is not large. Moreover,

the percolation threshold c ¼
ffiffiffi
3
p

p=8 � 0:6802 and coordination
number z = 8 of a BCC suspension are similar to the percolation
threshold p3 E 0.64 and average coordination number z E 6.5 of a
random isotropic suspension.32 For these reasons, it is sensible to
assume that the functional form of the function Z3(eCa) in (25) is the
same as that found for (26) and (27). We therefore posit that

Z3ðeCaÞ ¼
a3

1þ b3eCa9

þ
ð1þ c3Þ 1� a3

1þ b3eCa9


 �
þ ðeCa� 1Þz3

c3 þ eCa
eCa

and hence that

lim
c%p3

m3 ¼
a3m

1þ b3eCa9

þ
ð1þ c3Þ 1� a3

1þ b3eCa9


 �
þ ðeCa� 1Þz3

c3 þ eCa

g
2A
;

(28)

where, much like z3, a3, b3, and c3 are constants. The first describes
the value of the effective shear modulus lim

c%p3
m3 ¼ a3m at eCa = 0,

while the latter two modulate the transition from a3m to z3g/2A as
eCa increases. The numerical results presented in the next section
suggest that

a3 = 0.1800, b3 = 0.0017, c3 = 0.7878, z3 = 0.0169.
(29)

Remark 5. The apparent elasticity that foams and emulsions
containing monodisperse 3-spherical inclusions exhibit at perco-
lation has been the subject of many studies in the literature.33–38

Such a behavior falls squarely within the formulation presented

here when considering eCa c 1, since for large elasto-capillary
numbers the elasticity of the elastomer surrounding the liquid
inclusions is negligible. The various existing approximations for
foams and emulsions indicate that34–38

lim
c%p3

m3 � 1:01� 0:09ð Þ g
2A
:

All such estimates overpredict the result lim
c%p3

m3 � 0:0169
g
2A

suggested by our simulations for eCa c 1.
A unifying expression for space dimension n. For space

dimension n, in view of expressions (21) and (28), we can
compactly write

lim
c%pn

mn ¼ ZnðeCaÞm (30)

with

ZnðeCaÞ ¼
an

1þ bneCa9

þ
ð1þ cnÞ 1� an

1þ bneCa9


 �
þ ðeCa� 1Þzn

cn þ eCa
eCa;

(31)

where the values of the constants an, bn, cn, zn are given in
Table 1.

4 Numerical solutions for finite
volume fraction of inclusions

In this section, we present numerical solutions for the effective
shear modulus mn over the range eCa A [0,10] of elasto-capillary
numbers and the ranges c A [0,0.6] and c A [0,0.5] of volume
fractions of inclusions in space dimensions n = 2 and 3, respectively.
Making use of a recently developed finite-element (FE) scheme,6 the
solutions are generated by solving numerically the unit-cell problem
(14) over suitably selected unit cells Y and then computing the
resulting effective modulus of elasticity (13).

4.1 Construction of the unit cells Y

Prior to presenting the results themselves, we outline the
procedure by which we constructed the unit cells Y.

As noted in Remark 3 above, in order to model the type of
isotropic filled elastomer of interest here, it suffices to consider
unit cells containing random distributions of a finite number N of
inclusions that is large enough that the resulting effective modulus
of elasticity (13) is indeed isotropic to a high degree of accuracy.
Here, we follow in the footstep of recent contributions7,23 to
construct the pertinent unit cells.

Table 1 Values of the constants in the function Zn(eCa) for space
dimensions n = 2 and 3

n an bn cn zn

2 0 0 0 1
3 0.1800 0.0017 0.7878 0.0169

Soft Matter Paper



This journal is © The Royal Society of Chemistry 2023 Soft Matter, 2023, 19, 208–224 |  215

In a nutshell, we first constructed tens of thousands of
realizations with the algorithm introduced by Lubachevsky and
Stillinger19 for unit cells Y containing up to 960 randomly
distributed 2-spheres with volume fractions in the range
c A [0,0.6] and randomly distributed 3-spheres with volume
fractions in the range c A [0,0.5] for several fixed values of the
minimum distance d between the n-spherical inclusions. We
then filtered out the realizations that did not exhibit an
isotropic elastic response to within a stringent tolerance. Pre-

cisely, realizations whose effective modulus of elasticity L did
not satisfy the condition

K �LK� 2mnK
�� ��

1
K �LK
�� ��

1
	 0:02 with mn :¼

1

nð1þ nÞ � 2
K � �L (32)

were discarded as not sufficiently isotropic. This last relation,
where we recall that K stands for the deviatoric orthogonal
projection tensor (5)2, serves to define the effective shear
modulus mn in terms of the entire effective modulus of elasticity
(13) that is computed numerically.

The maximum difference in effective shear modulus (32)2

between any two realizations (with the same elasto-capillary
number eCa, volume fraction c, and minimum inter-inclusion
distance d) that did satisfy condition (32)1 was small, less than
2%. This confirmed that the values (32)2 obtained for mn could
indeed be considered39 as the effective shear modulus of an
isotropic incompressible elastomer filled with a random isotropic
suspension of liquid n-spherical inclusions of monodisperse size.

For completeness, we have included as ESI† two realizations
that satisfy (32) for each of the volume fractions c = 0.1, 0.2, 0.3,
0.4, 0.5, 0.6 that we have considered in space dimension n = 2

and for each of the volume fractions c = 0.1, 0.2, 0.3, 0.4, 0.5
that we have considered in space dimension n = 3. All these
realizations correspond to a minimum inter-inclusion distance
of d = 0.01A. For illustration purposes, moreover, Fig. 2 shows
four of these realizations, two for n = 2, the other two for n = 3,
for volume fractions c = 0.3 and 0.5 of inclusions.

Remark 6. For definiteness, the FE results that we present
throughout this work for mn correspond to the average of all the
realizations (with the same elasto-capillary number eCa, volume
fraction c, and minimum inter-inclusion distance d) that satisfied
condition (32). Moreover, for each elasto-capillary number eCa that
we considered, the results are presented up to the maximum
volume fraction c of inclusions for which we managed to generate
converged solutions and correspond to the basic case of a vanish-
ingly small minimum inter-inclusion distance, i.e., d = 0+.

4.2 Results

Fig. 3 and 4 present the FE solutions (solid circles) obtained for
the effective shear modulus mn of a random isotropic suspension
of monodisperse liquid n-spherical inclusions in an isotropic
incompressible elastomer. While Fig. 3 shows the effective shear
modulus m2 for 2-spherical inclusions, Fig. 4 shows the effective
shear modulus m3 for 3-spherical inclusions. The results are
presented normalized by the shear modulus m of the elastomer
as a function of the volume fraction c of inclusions for seven
different values of elasto-capillary number, eCa = 0, 0.1, 0.5, 1, 2.5,
5, 10. For better quantitative visualization, parts (a) of the figures
show the results for 0 r eCa o 1, while parts (b) show the results
for eCa Z 1. For direct comparison, the figures also display the
results based on the formula (33) introduced in the next section.

Three observations are immediate from Fig. 3 and 4. First,
irrespectively of the volume fraction c of inclusions, the effec-
tive shear modulus mn is a monotonically increasing function of
the elasto-capillary number eCa. What is more, exactly as the
behavior noted in the dilute limit,

mn o m if eCao 1

mn ¼ m if eCa ¼ 1

mn 4 m if eCa4 1

8>>><>>>: :

That is, while the presence of liquid inclusions leads to the soft-
ening of the macroscopic response relative to that of the elastomer
when eCa o 1, it leads to its stiffening when eCa 4 1. The
transition from softening to stiffening still appears to occur at
eCa = 1, at least up to the maximum volume fractions of inclusions
that we considered. The explanation for this monotonic behavior in
eCa remains the same as that for the dilute limit. Namely, the
presence of surface tension (i.e., eCa 4 0) makes the inclusions
resist deformation thereby providing a stiffening mechanism. For
eCa 4 1, this mechanism becomes strong enough that overtakes
the softening provided by the lack of bulk shear stiffness within the
inclusions resulting in the stiffening of the macroscopic response
relative to that of the elastomer. The second immediate observation
from Fig. 3 and 4 is that both the softening and the stiffening
afforded by the presence of liquid n-spherical inclusions can be very

Fig. 2 Representative unit cells Y in space dimensions n = 2 and 3
containing random distributions of (a) N = 120 and (b) N = 960 2-
spherical inclusions and (c) N = 120 and (d) N = 960 3-spherical inclusions
of monodisperse radius A at volume fractions (a and c) c = 0.3 and (b and d)
c = 0.5 and minimum distance d = 0.01A between the inclusions.
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significant even at moderate values of c and eCa. Finally, we note
that the formula (33) is in good agreement with the FE solutions.

5 An explicit formula for mn

In this section, we show that the formula

mn ¼ m 1þ anðeCaÞ
c

pn


 �2

þbn
c

pn


 �nþ1
 !

1� c

pn


 �"

þ c

pn


 �3n�4
ZnðeCaÞð Þ�

nþð2þnÞeCa
ð2þnÞpnðeCa�1Þ

#�ð2þnÞpnðeCa�1Þ
nþð2þnÞeCa

; n¼ 2; 3;

(33)

with

anðeCaÞ ¼
dn þ fneCa

en þ gneCa
;

b2 ¼ 0

b3 ¼ 0:4034

8>>><>>>: ; (34)

where the values of the constants dn, en, fn, gn are given in
Table 2, and where we recall that pn and Zn(eCa) are given by
(15) and (31) for space dimensions n = 2 and 3, is in quantitative
agreement with all the analytical results outlined in Section 3
and the numerical results presented in Section 4 and hence
that it provides an accurate description for the effective shear
modulus of a random isotropic suspension of monodisperse
liquid n-spherical inclusions in an isotropic incompressible
elastomer.

Fig. 3 Finite-element results (solid circles) for the effective shear mod-
ulus �m2 of a random isotropic suspension of monodisperse liquid
2-spherical inclusions in an isotropic incompressible elastomer. The results
are shown normalized by the shear modulus m of the elastomer as a
function of the volume fraction c of inclusions for elasto-capillary numbers
0 r eCa o 1 in part (a) and for eCa Z 1 in part (b). For direct comparison,
the proposed formula (33) is also included (solid lines) in the figures.

Fig. 4 Finite-element results (solid circles) for the effective shear mod-
ulus �m3 of a random isotropic suspension of monodisperse liquid
3-spherical inclusions in an isotropic incompressible elastomer. The results
are shown normalized by the shear modulus m of the elastomer as a
function of the volume fraction c of inclusions for elasto-capillary numbers
0 r eCa o 1 in part (a) and for eCa Z 1 in part (b). For direct comparison,
the proposed formula (33) is also included (solid lines) in the figures.
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5.1 The dilute limit

In the limit as the volume fraction of inclusions c& 0þ, the
effective shear modulus (33) reduces asymptotically to

mn ¼ mþ ð2þ nÞðeCa� 1Þ
nþ ð2þ nÞeCa mcþ ð2þ nÞðeCa� 1Þ

2pn

1� 2anðeCaÞ
nþ ð2þ nÞeCa




� ð3� nÞ ZnðeCaÞð Þ�
nþð2þnÞeCa
ð2þnÞpnðeCa�1Þ

1þ 2eCa
þ ð2þ nÞpnðeCa� 1Þ
ðnþ ð2þ nÞeCaÞ2

1CA

 mc2 þOðc3Þ:

(35)

Thus, irrespectively of the function an(eCa), constant bn, and
function Zn(eCa), the formula (33) agrees identically with the
exact dilute result (17).

5.2 Higher-order correction to the dilute limit for eCa = 0

For the case of 3-spherical inclusions and elasto-capillary
number eCa = 0, the asymptotic result (35) specializes to

m3 ¼ m� 5

3
mcþ 0:5mc2 þOðc3Þ:

This result agrees identically with the higher-order exact
result (20).

5.3 Percolation

In the limit as the volume fraction of inclusions c% pn, the
effective shear modulus (33) reduces asymptotically to

mn = Zn(eCa)m + O(pn � c). (36)

Thus, the formula (33) also agrees identically with the corres-
ponding result (30) at percolation.

5.4 Comparison with numerical solutions

For intermediate values of volume fraction c of inclusions away
from the dilute limit and percolation, Fig. 3 and 4 above show
comparisons between the formula (33) and the numerical
solutions presented in Section 4. It is plain that both sets of
results are in good quantitative agreement for all elasto-
capillary numbers eCa and volume fractions c for which the
numerical results are available.

5.5 The special cases of eCa = 0, 1, and + N

In the absence of surface tension on the elastomer/liquid inter-
faces, when eCa = 0, the effective shear modulus (33) reduces to

mn ¼

m 1þ dn

en

c

pn


 �2

þbn
c

pn


 �nþ1
 !

1� c

pn


 �
þ c

pn


 �3n�4
a

n
ð2þnÞpn
n

" #ð2þnÞpn
n

:

Moreover, for elasto-capillary number eCa = 1, the effective shear
modulus (33) specializes to

mn ¼ m ¼ g
2A
:

That is, the presence of liquid inclusions goes unnoticed in the
sense that mn = m for any value of the volume fraction c of
inclusions. Finally, for unbounded elasto-capillary number when
eCa = +N, the effective shear modulus (33) reduces to

mn ¼ m 1þ fn

gn

c

pn


 �2

þbn
c

pn


 �nþ1
 !

1� c

pn


 �" #�pn
:

As expected, in spite of the fact that the underlying inclusions do
not deform and remain n-spherical when eCa = +N, this last
result is significantly softer than the corresponding result for a
suspension of monodisperse rigid n-spherical inclusions:9

mrign ¼ m 1þ an
c

pn


 �2

þbn
c

pn


 �nþ1
 !

1� c

pn


 �" #�ð2þnÞpn
2

; (37)

where a2 = � 0.238, b2 = � 0.299, a3 = 0.017, b3 = 0.635 for space
dimensions n = 2 and 3. The reason for this difference is the same
already noted for the dilute result (19), namely, that the forces at
a solid/liquid-inclusion interface featuring surface tension are
different from those at a solid/rigid-inclusion interface, even for
unbounded elasto-capillary number eCa = +N.

5.6 Connection with the classical differential scheme

The formula (33) can be thought of as a generalization of the
classical differential-scheme (DS) result40,41

mliqDSn
¼ m

1� cð Þ�
2þn
n

(38)

for the effective shear modulus of an isotropic suspension of
polydisperse liquid n-spherical inclusions in an isotropic
incompressible solid in that: (i) the volume fraction c is
re-scaled†† by the percolation threshold c 7! c=pn and (ii) the
stiffness due to the presence of a surface tension on the solid/
liquid-inclusion interfaces is account for, including at
percolation.

Table 2 Values of the constants in the function an(eCa) for space
dimensions n = 2 and 3

n dn en fn gn

2 �0.0002 0.0010 0.3634 1.7768
3 0.0016 0.0100 0.8170 1.2252

†† A re-scaling of this type, which can be traced back to the work of Eilers,42 has
been repeatedly used—albeit heuristically, disconnected from the differential
scheme40,41—to model percolation in the analogous problem of the determina-
tion of the viscosity of suspensions of rigid 3-spheres in a Newtonian fluid.43,44
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5.7 Realizability

In direct analogy with the effective shear modulus (37) for
suspensions of monodisperse rigid n-spheres, the proposed
formula (33) is not ‘‘just’’ a formula that happens to be in
agreement with the above-summarized analytical and numerical
results, but has also the merit to be realizable as an iterated-
homogenization solution. Precisely, as elaborated in the next
section, the formula (33) can be shown to be the exact homo-
genization solution for the effective shear modulus of a certain
class of random isotropic suspensions of liquid n-spherical
inclusions with infinitely many sizes in an isotropic incompres-
sible elastomer. That the effective shear modulus (33) is descrip-
tive of both isotropic suspensions with monodisperse and with
(a specially selected class of) polydisperse liquid n-spherical
inclusions is nothing more than a manifestation of the richness
in behaviors that suspensions of polydisperse liquid n-spherical
can exhibit.

6 Realizability

To show that the effective shear modulus (33) is realizable, we
begin by extending the generalized differential scheme for
linear elastostatics45,46 to account for the presence of surface
tension in the filled elastomer of interest here. The derivation
goes as follows.

Consider the domain O to be initially occupied by a ‘‘back-
bone’’ elastomer, which we label s = 0 and take to be homo-
geneous, isotropic, and incompressible with, as of yet, arbitrary
shear modulus m(0). Embed a dilute distribution of two different
materials, labeled s = 1 and 2, one being n-spherical
inclusions‡‡ made of another isotropic incompressible elasto-
mer with shear modulus m(1), the other being n-spherical inclu-
sions of monodisperse radius A[1] made of an incompressible
liquid featuring an initial surface tension g[1] at the interfaces
with the ‘‘backbone’’ elastomer. Denoting the infinitesimal
volume fractions of these two types of added materials by
v[1]

1 and v[1]
2 , respectively, it follows from use of the dilute

solutions (18) and (17) that the resulting three-phase filled
elastomer has an effective shear modulus em[1]

n given by

em½1�n ¼ mð0Þ þ ð2þ nÞðmð1Þ � mð0ÞÞ
nmð0Þ þ 2mð1Þ

mð0Þv½1�1 þ
ð2þ nÞðeCa½1� � 1Þ
nþ ð2þ nÞeCa½1� m

ð0Þv
½1�
2

(39)

to order O(1) in v[1]
1 and v[1]

2 , where eCa[1] = g[1]/2m(0)A[1].
Taking next the filled elastomer with shear modulusem[1]

n —rather than m(0)—as the ‘‘backbone’’ elastomer, we repeat
exactly the same addition of the two types of n-spherical
inclusions in dilute proportions. This second iteration requires
utilizing the same dilute distribution as in the first iteration,
but with a larger length scale, since (39) is being employed as
the shear modulus of a ‘‘homogenous’’ material. Denoting by
v[2]

1 and v[2]
2 the infinitesimal volume fractions of materials s = 1

and 2 embedded in this second step, the resulting filled
elastomer has now an effective shear modulus given by

em½2�n ¼ em½1�n þ ð2þ nÞðmð1Þ � em½1�n Þ
nem½1�n þ 2mð1Þ

em½1�n v
½2�
1 þ
ð2þ nÞðeCa½2� � 1Þ
nþ ð2þ nÞeCa½2� em½1�n v

½2�
2

with eCa[2] = g[2]/2m[1]
n A[2], where g[2] and A[2] denote, respectively,

the surface tension of the liquid at the interfaces with the new
‘‘backbone’’ material and the radius of the liquid inclusions.
Note that we are at liberty to choose an arbitrary value for the
ratio g[2]/A[2]. Thus, we are at liberty to choose an arbitrary
elasto-capillary number eCa[2]. Note further that the total
volume fractions of materials s = 1 and 2 at this stage are given,
respectively, by f[2]

1 = v[2]
1 + f[1]

1 (1 � v[2]
1 � v[2]

2 ) and f[2]
2 = v[2]

2 +
f[1]

2 (1 � v[2]
1 � v[2]

2 ), where f[1]
1 = v[1]

1 and f[1]
2 = v[1]

2 .
It is apparent now that repeating the same above process

k + 1 times, for arbitrarily large k 2 N, generates a filled
elastomer with effective shear modulus

em½kþ1�n ¼ em½k�n þ ð2þ nÞðmð1Þ � em½k�n Þ
nem½k�n þ 2mð1Þ

em½k�n v
½kþ1�
1

þð2þ nÞðeCa½kþ1� � 1Þ
nþ ð2þ nÞeCa½kþ1� em½k�n v

½kþ1�
2 ;

(40)

which contains total volume fractions of materials s = 1 and 2
given by

f½kþ1�1 ¼ v
½kþ1�
1 þ f½k�1 1� v

½kþ1�
1 � v

½kþ1�
2

� �
f½kþ1�2 ¼ v

½kþ1�
2 þ f½k�2 1� v

½kþ1�
1 � v

½kþ1�
2

� �
8><>: : (41)

Fig. 5 provides a schematic illustration of the construction
process leading to (40).

Upon inverting relations (41) in favor of v[k+1]
1 and v[k+1]

2 ,
taking the limit of infinitely many iterations (k - N), para-
meterizing the construction process with a time-like variable
t A [0,1], and choosing m(0) = m(1) = m, the difference eqn (40)
yields the first-order nonlinear ordinary differential equation
(ODE)

ð1�f1ðtÞ�f2ðtÞÞ
demn
dt
ðtÞ ¼ ð1�f2ðtÞÞ

df1

dt
ðtÞþf1ðtÞ


df2

dt
ðtÞ

� �


ð2þ nÞðm�emnðtÞÞ
nemnðtÞþ 2m

emnðtÞ
þ ð1�f1ðtÞÞ

df2

dt
ðtÞþf2ðtÞ

df1

dt
ðtÞ

� �


ð2þ nÞðgeCaðtÞ� 1Þ
nþð2þ nÞgeCaðtÞ emnðtÞ t 2 ð0;1�;

(42)

with initial condition

emn(0) = m, (43)

that defines the effective shear modulus

mn = emn(1) (44)

‡‡ For our purposes here, we consider that the material s = 3 is added in the form
of n-spherical inclusions, but any other shape could be considered as well, so long
as the amount of added material in infinitesimal.
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of a very large family of random isotropic suspensions of
incompressible liquid n-spherical inclusions of infinitely
many sizes in an incompressible isotropic elastomer with shear
modulus m.

In eqn (42), f1(t), f2(t), geCaðtÞ stand for non-negative con-
tinuous functions of choice. The first two are subject to the
inequality constraint f1(t) + f2(t) r 1. In addition, they must be
selected so that the combinations f1(t)/(1 � f1(t) � f2(t)) and
f2(t)/(1 � f1(t) � f2(t)) are monotonically increasing functions
of t, f1(0) = f2(0) = 0, and f2(1) = c. The specific choice of

functions f1(t), f2(t), geCaðtÞ defines the type of suspension
being considered, that is, the specific sizes and spatial distribu-
tions of the liquid n-spherical inclusions as well as the specific
elasto-capillary numbers at all length scales. Different choices

of f1(t), f2(t), geCaðtÞ lead hence to different solutions for the
effective shear modulus mn of the resulting suspension.

From a computational point of view, we remark that the
ODE (42) needs to be solved from the initial condition (43) at
t = 0 up to t = 1, as its solution then emn(1) defines the effective
shear modulus (44) of the suspension.

6.1 One-sided radial paths with constant path-independent
elasto-capillary number

At this stage, it is a simple matter to deduce that the
simple choice

f1ðtÞ ¼ 0; f2ðtÞ ¼ ct; geCaðtÞ ¼ 0 (45)

in the initial-value problem (42)–(44) leads to the classical DS
result (38). The more general choice

f1ðtÞ ¼ 0; f2ðtÞ ¼ ct; geCaðtÞ ¼ eCa; (46)

which accounts for the presence of surface tension via an

elasto-capillary number geCaðtÞ that is constant and the same
for all length scales in the construction process, leads to the
effective shear modulus

mDSn ¼
m

1� cð Þ
ð2þnÞðeCa�1Þ
nþð2þnÞeCa

: (47)

This result was recently introduced (for n = 3) by Ghosh and
Lopez-Pamies6 as the simplest differential-scheme result that
accounts for surface tension.

Note that the construction paths (45) and (46) are one-sided
and radial in the sense that only material s = 2 (i.e., the liquid
n-spherical inclusions) is added linearly in time t throughout
the entire construction process. As a result, they lead to
suspensions wherein the liquid n-spherical inclusions are
spatially distributed in ways in which they can occupy the
entire volume of the suspension at hand. For that reason, the
ensuing effective shear moduli (38) and (47) percolate at c = 1.

6.2 General radial paths with constant path-dependent elasto-
capillary number

To show that the result (33) proposed in this work is a solution
of the initial-value problem (42)–(43), we need to consider the
more general family of radial construction paths with constant
but path-dependent elasto-capillary number

f1ðtÞ ¼ FnðcÞt; f2ðtÞ ¼ ct; geCaðtÞ ¼ wnðcÞeCa; (48)

where the functions Fn(c) and wn(c) satisfy the inequalities
0 r Fn(c) r1 � c and wn(c) Z 0 but are arbitrary otherwise.
We emphasize that in the construction process (48)—contrary
to (45) and (46)—material s = 1 (i.e., the elastomer) and material
s = 2 (i.e., the liquid n-spherical inclusions) are both added

linearly in time t, while the elasto-capillary number geCaðtÞ is
constant and the same for all length scales but its value
wn(c)eCa depends on the construction path via the final volume
fraction c of liquid n-spherical inclusions.

Granted the family of construction paths (48), the initial-
value problem (42)–(43) can be integrated into the closed form

EðmnÞ ¼
2

2þ n
þ Fn

cK
þ n

2þ n
�Fn

cK


 �
mn
m


 � FnðFnþcÞð2þnÞ2
ð2cKþð2þnÞFnÞðð2þnÞFn�cnKÞ

� ð1�Fn� cÞ mn
m


 � 2ðFnþcÞ
2cKþð2þnÞFn

¼ 0;

(49)

where, for simplicity, we have introduced the notation K =
(2 + n)(wneCa � 1)/(n + (2 +n)wneCa) and have omitted the
argument c in Fn and wn. For a given choice of functions
Fn(c) and wn(c), a given volume fraction c of liquid n-spherical
inclusions, a given elasto-capillary number eCa, and a given

Fig. 5 Schematic of the of iterative construction process.
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space dimension n, the nonlinear algebraic eqn (49) defines the
effective shear modulus mn, normalized by the shear modulus m
of the underlying elastomer, of the resulting suspension.

For each of the elasto-capillary numbers eCa = 0, 0.1, 0.5, 1,
2.5, 5, 10 considered in the previous section, it is not difficult to
show—via numerical solutions of (49)—that one can find a
plurality of functions Fn(c) and wn(c) that do indeed lead to the
effective shear modulus (33) thereby demonstrating that the
proposed formula (33) is realizable by a suspension of liquid
n-spherical inclusions with infinitely many sizes. Again, the fact
that the effective shear modulus (33) is descriptive of both
isotropic suspensions with monodisperse and with (a specially
selected class of) polydisperse liquid n-spherical inclusions
is nothing more than a manifestation of the wide range of
behaviors that suspensions of polydisperse liquid n-spherical
inclusions can exhibit.

7 Final comments
7.1 Suspensions with polydisperse 3-spherical inclusions with
constant elasto-capillary number

It is instructive to compare the effective shear modulus (33) for
isotropic suspensions of monodisperse 3-spherical inclusions
with earlier results for suspensions of 3-spherical inclusions
of infinitely many sizes featuring a constant elasto-capillary
number. Those are the DS result6 (47) already referenced above
and the differential-coated-sphere (DCS) result worked out by
Mancarella et al.11 following in the footstep of Christensen and
Lo.16 The latter reads

mDCS3
¼

mþ 70ðeCa� 1Þc
21þ 35eCaþ 30ð1� eCaÞcþ ð19� 40eCaÞc10=3 þ ffiffiffiffiffi

q3
p m

(50)

with

q3 ¼ 49ð3þ 5eCaÞ2� 28ð1� eCaÞð3þ 5eCaÞc� 4700ð1� eCaÞ2c2

þ 9408ð1� eCaÞc8=3� 14ð393� 25ð1þ 8eCaÞeCaÞc10=3

þ 4ð1� eCaÞð19� 40eCaÞc13=3þð19� 40eCaÞ2c20=3:

In the limit of dilute volume fraction of 3-spherical inclusions
as c& 0, the effective shear moduli (47) and (50) reduce asymp-
totically to

mDS3
¼ mþ 5ðeCa� 1Þ

3þ 5eCa
mcþ 5ðeCa� 1Þð5eCa� 1Þ

ð3þ 5eCaÞ2 mc2 þOðc3Þ

and

mDCS3
¼ mþ 5ðeCa� 1Þ

3þ 5eCa
mcþ 10ðeCa� 1Þ2

ð3þ 5eCaÞ2 mc
2 þOðc3Þ: (51)

As expected, the coefficients of O(c2) in both of these expressions
are different from the one in (35). For eCa 4 0 (but not for
eCa = 0), a quantitative comparison reveals that the coefficient of

O(c2) in (51) is closest to the one in (35). In this regard, it is also
worth noting that the DCS result (50) happens to coincide
identically up to and including O(c2) with the Hashin–Shtrikman
(HS) formula

mHS3
¼ mþ 5ðeCa� 1Þc

3þ 2cþð5� 2cÞeCam¼ mþ 5m
X1
k¼1

2k�1ðeCa� 1Þk
ð3þ 5eCaÞk ck;

(52)

which was heuristically introduced12 by replacing the shear
modulus of one of the phases, say mi, in one of the HS bounds15

for two-phase isotropic composite materials with an equivalent
elasto-capillary stiffness, namely, mi = 8eCam/(5 + 3eCa). As opposed
to (47) and (50), the HS formula (52) is not the homogenization
solution of a suspension of 3-spherical inclusions.

The behaviors as c% p3 of the effective moduli (47) and (50)
are also very different from that (36) of formula (33). This is not
surprising since the effective moduli (47) and (50) correspond
to suspensions wherein the 3-spherical inclusions are of infi-
nitely many different sizes and spatially distributed in ways in
which they can occupy the entire volume of the suspension at
hand, that is, they correspond to suspensions that percolate at c
= 1, as opposed to at c = p3.

7.2 Finite deformations

When considering finite quasistatic deformations, the homoge-
nized behavior of a standard (without residual stresses and
interfacial forces) hyperelastic composite material is character-
ized by an effective stored-energy function W(F) that, in general,
is functionally very different from the stored-energy functions
that describe the underlying hyperelastic constituents. This is so
even in the most specialized case of isotropic incompressible
composite materials made of isotropic incompressible constitu-
ents, when the resulting effective stored-energy function W (F),
much like the local stored-energy function W(X,F), admits repre-
sentations in terms of just n � 1 invariants.

Based on a wide range of analytical and numerical results
that have appeared over the past two decades, as well as some
new results, Lefèvre et al.23 have recently conjectured that the
case of isotropic incompressible Neo-Hookean elastomers in
space dimension n = 2 is a rare exception to the aforementioned
general rule. Precisely, these authors have posited that the
homogenized behavior of an isotropic hyperelastic material
comprised of incompressible Neo-Hookean elastomers with
stored-energy function

WðX;FÞ ¼
mðXÞ
2

F � F� 2½ � if detF ¼ 1

þ1 else

8><>:
is itself exactly Neo-Hookean with effective stored-energy function

WðFÞ ¼
m
2
F � F� 2
� 	

if detF ¼ 1

þ1 else

8><>: ;

where m is the effective shear modulus of the composite material
under small quasistatic deformations. From work22 on suspensions
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of rigid inclusions in rubber, we know that the same conjecture
cannot possibly hold in space dimension n = 3. However, from the
same and ensuing works,47–49 we also know that for n = 3 the
homogenized behavior of an isotropic hyperelastic material com-
prised of incompressible Neo-Hookean elastomers is, in essence,
Neo-Hookean—that is, the resulting effective stored-energy function
is approximately linear in I1 = F�F and independent of I2 = F�1�F�1.

Interestingly, Ghosh and Lopez-Pamies6 have shown that
the above behavior remains true in the more general setting of
an isotropic incompressible Neo-Hookean elastomer filled with
incompressible liquid inclusions that are separated from the
elastomer by interfaces featuring a constant initial surface
tension. This implies that the formula (33) can be used not
only to characterize the macroscopic mechanical response of a
random isotropic suspension of liquid n-spherical inclusions in
an isotropic incompressible elastomer under small quasistatic
deformations, but also under moderately large quasistatic
deformations (when the elasticity of the elastomer may be
approximated as Neo-Hookean). Precisely, we have that the
macroscopic or homogenized mechanical response of a random
isotropic suspension of liquid n-spherical inclusions, each
having identical initial radius A, in an isotropic incompressible
elastomer subjected to finite quasistatic deformations is hyper-
elastic and that its effective stored-energy function is given
approximately by

WðFÞ ¼
mn
2

F � F� n
� 	

if detF ¼ 1

þ1 else

8><>: ; n ¼ 2; 3;

where the effective shear modulus mn is given by the proposed
formula (33).
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Appendices

Appendix A. The effective shear
modulus of a hexagonal suspension of
monodisperse liquid 2-spheres

In this appendix, we present numerical solutions for the
effective shear modulus mHex

2 of a hexagonal suspension of
monodisperse liquid 2-spherical inclusions. They are generated
by solving—via the same FE scheme utilized in Section 4—the
unit-cell problem (14) over the pertinent unit cells Y and then
computing the resulting effective modulus of elasticity (13). The
calculations are performed over the ranges eCa A [0,10] and
c A [0,0.905] of elasto-capillary numbers and volume fractions
of inclusions. For illustration purposes, Fig. 6 shows two of the
unit cells used for c = 0.6 and c = 0.905.

Much like random isotropic suspensions, hexagonal suspen-
sions also lead to a macroscopic elastic response that is isotropic.
In particular, if the elastomer and the liquid making up the

inclusions are both incompressible, the effective modulus of
elasticity is of the isotropic incompressible form

L ¼ 2mHex
2 K þ1J

Fig. 6 Unit cells Y for hexagonal suspensions of monodisperse liquid
2-spherical inclusions of radius A at volume fractions (a) c = 0.6 and
(b) c = 0.905.

Fig. 7 Finite-element results for the effective shear modulus mHex
2 of a hexa-

gonal suspension of monodisperse liquid 2-spherical inclusions in an isotropic
incompressible elastomer. The results are shown normalized by the shear
modulus m of the elastomer as a function of the volume fraction c of inclusions
for elasto-capillary numbers 0 r eCa o 1 in part (a) and for eCa Z 1 in part (b).
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Fig. 7 presents the FE solutions obtained for the normalized
effective shear modulus mHex

2 /m as a function of the volume
fraction c of inclusions for seven different values of elasto-
capillary number, eCa = 0, 0.1, 0.5, 1, 2.5, 5, 10. Part (a) of the
figure shows the results for 0 r eCa o 1, while part (b) shows
the results for eCa Z 1.

In order to estimate the effective shear modulus at per-
colation mHex,perc

2 , one can extrapolate the data in Fig. 7 from

c = 0.905 to the percolation threshold c ¼ p=2
ffiffiffi
3
p
� 0:9069. The

result obtained is given by relation (23) in the main body of
the text.

Appendix B. The two effective shear
moduli of a body-centered cubic
suspension of monodisperse liquid
3-spheres

Finally, in this appendix, we present numerical solutions for

the effective modulus of elasticity L of a BCC suspension of
monodisperse liquid 3-spherical inclusions. They are generated
by solving—via the same FE scheme utilized in Section 4—the
unit-cell problem (14) over the pertinent unit cells Y and then
computing the resulting effective modulus of elasticity (13).
The calculations are performed over the ranges eCa A [0,10]
and c A [0,0.675] of elasto-capillary numbers and volume
fractions of inclusions. For illustration purposes, Fig. 8 shows
two of the unit cells used for c = 0.3 and c = 0.67.

In contrast to random isotropic suspensions, BCC suspensions
lead not to a macroscopic elastic response that is isotropic, but to
one with cubic symmetry. In particular, if the elastomer and the
liquid making up the inclusions are both incompressible, the
effective modulus of elasticity is of the cubic incompressible
form

L ¼ 2mBCCa
3 Ka þ 2mBCCs

3 Ks þ1J;

where Ka ¼ S� J, Ks ¼ K �Ka, and

Sijkl ¼
1 if i ¼ j ¼ k ¼ l

0 else

(

when the laboratory Cartesian frame of reference {ei} is chosen
to coincide with the principal axes of the cubic symmetry of the
suspension; see Fig. 8.

Fig. 9 and 10 present, respectively, the FE solutions obtained

for the normalized effective axisymmetric shear modulus mBCCs
3 =m

and effective simple shear modulus mBCCa
3 =m as functions of the

volume fraction c of inclusions for seven different values of
elasto-capillary number, eCa = 0, 0.1, 0.5, 1, 2.5, 5, 10. Parts (a)
of the figures show the results for 0 r eCa o 1, while parts (b)
show the results for eCa Z 1.

In order to estimate the effective shear moduli at percolation

mBCCa;perc
2 and mBCCs ;perc

2 ; once again, one can extrapolate the data
in Fig. 9 and 10 from c = 0.675 to the percolation threshold

Fig. 8 Unit cells Y for BCC suspensions of monodisperse liquid
3-spherical inclusions of radius A at volume fractions (a) c = 0.3 and
(b) c = 0.67.

Fig. 9 Finite-element results for the effective axisymmetric shear mod-
ulus mBCCa

3 of a BCC suspension of monodisperse liquid 3-spherical
inclusions in an isotropic incompressible elastomer. The results are shown
normalized by the shear modulus m of the elastomer as a function of the
volume fraction c of inclusions for elasto-capillary numbers 0 r eCa o 1
in part (a) and for eCa Z 1 in part (b).
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c ¼
ffiffiffi
3
p

p=8 � 0:6802. The results obtained are given by relations
(26) and (27) in the main body of the text.
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